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Chapter 1

Preface to Hilbert Spaces

Natura non facit saltus - Liebniz

Any working mathematical physicist�s indispensable tool is the area of functional analysis in

which there exists a natural structure to be able to model physics. The idea of a complete space

corresponds to being able to �nd a solution in an iterated sequence of steps or experiments,

provided that the results of the sequence become closer as they progress, enough to perform

calculus. The implications are not limited to physics: indeed, functional analysis has a major

role in the �eld of numerical analysis, geometry and even number theory.

The dot product �nds major use in geometry. The work of David Hilbert on integral equa-

tions in a series of papers between 1904 and 1912 [14] found such a striking similarity between

this dot product of vectors and a particular product of functions � the ordinary integration.

This initial motivation from work on Integral Equations prompted a formal axiomatic frame-

work of these ideas, which was furnished by John von Neumann [33]1, a by-product of which

was the equivalence of the Schrödinger approach and the Hiesenberg approach in Quantum

Mechanics [25].

The formulation of a Hilbert Space H, now modern analysis, was a quantum leap from

classical analysis. The latter was con�ned to Real and Complex Analysis and the solution to

di¤erent equations. After Cantor�s paradise and Cauchy�s � � � approach, analysis took a

di¤erent turn. The focus was shifted to foundational aspects. Hints of topology and algebra

1Contrary to popular belief, the paper was published in 1930, not 1929, as seen on Springer�s o¢ cial website.
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began to reveal themselves in classical analysis. This revelation was not an isolated experience:

starting with the work of the giants viz. Gauss, Riemann, Grassman, Hadamard, Fréchet,

Hausdro¤ [28] in the budding for Non-Euclidean Geometry, Vector Spaces, (Analytic) Function

Spaces, Metric spaces and �nally Topological Spaces, respectively, thereby the new �eld of

modern analysis was born. Functions (and just analytic ones) were now considered as points

on a space, much like real numbers on a line.

To see the analogy, consider the popular dot product in �nite dimensions

ha; bi =
nX
i=1

aibi

For the in�nite case, one has

hf; gi =
1X
k=1

f (xk) g (xk)

where f ,g are functions f : N �! R i.e. sequences. In most cases, this is in�nite unless one

considers functions f such that
1X
k=1

jf (xk)j2 <1

This is, by current standards, a point in l2 space. Using point-wise addition and scalar multipli-

cation, one can easily see that this as a vector, an element of a special space once reserved only

for the Euclidean space. These analogies were strengthened by the Banach-Mazur theorem,

which states that every Banach space is isometrically isomorphic to a subspace of a continuous

scalar functions on a compact Hausdro¤ Space. We adopt the approach of Hilbert himself for

a justi�cation. A general form of an integral equation, as conceived by David Hilbert [14], is

f (x) = ' (x)� �
bZ
a

K (s; t)' (t) dt

where ' is unknown, K is kernel of the equation. In current literature, this is called Voltera�s

Integral Equation of second kind2.

In terms of countable basis, the integral equation then took the form

2Hilbert called this equation Integral Equation of Second Kind [14]
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fk +
X

Kklfl = gk

In terms of looking at Kkl as Fourier Coe¢ cients, from Parvesal�s relation3, we can readily

obtain X
k2N
jfkj2 =

bZ
a

jf (x)j2 dx

We explain this leap: the trouble with direct substitution itself is that then uncountably

many basis are considered whereas the sum over an uncountable set is always in�nite.

Proof. We prove the contrapositive: let (x�)�2A for some uncountable A � R be a sequence

such that X
�2A

x� =M <1

Consider Sn =
�
� 2 A : x� > 1

n

	
Then, M � ��2Snx� > ��2Sn1=n = N

n where N 2 N or N =

1 is the number of elements in Sn. Thus, jSnj < Mn. Hence f� : � 2 A and x� > 0g = [Sn
is countable. That is, x� = 0 for all but at most countably many �

Of course one can, in principle, use the supremum to account for the uncountable case but

that would have to be a generalisation in terms of integrals via measure theory and that, too,

using the counting measure, thus assuring the exclusion of a large class of functions. Hilbert�s

genius lay in recognising in�nite orthonormal (countable) basis for functions, thus superseding

the limitation. Such basis could be, say, in terms of ei = xi with Maclaurin�s series expansion

of a function for arbitrary domains and e2�ikx in terms of Fourier Series expansion for the unit

interval as a domain. Under this approach, the inner product then took a natural form

hf; gi =
bZ
a

f (x) g (x)dx

implying that f 2 l2 (N) = L2 (N;m) where m is the counting measure. The justi�cation

later came from what is now known as Riesz-Fisher Theorem: for any sequence (ck) and any

3A variant of the 1799 Parvesal�s relation says that if two square-integrable complex-valued functions f (z)

and g (z) have Fourier series f (z) =
1X
n=0

fne
inz and g (z) =

1X
n=0

gne
inz, then

1X
n=0

fngn =
bR
a

f (z) g (z)dz
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orthonormal system (ek) 2 L2(a; b), there exists a function f 2 L2(a; b) such that hek; fi =

ck () (ck) 2 l2 [26], later furnishing an isomorphism between the two spaces, thus concluding

that the "sequential approach" is the same as the "integral approach". Note that, however, not

all continuous functions fall under the space L2 (a; b) �only smooth functions with a compact

support do with an added completion [16] without resorting to the de�nition of a measure.

Technically, this implies the required

bZ
a

jf (x)j2 dx <1

Finally, in order to show that the idea of an abstract Hilbert space was accurately captured

in the work on integral equations[14], we mention the following important theorem: every

separable Hilbert space is isomorphic to a subspace of L2. Thus, the importance of square

integrable functions, one instance of which is Schrodinger�s wave equation, is not without its

importance, to which we now turn.

4



Chapter 2

Formulation and Limitation of

Quantum Mechanics

All of science is uncertain and subject to revision. The glory of science is to imagine

more than we can prove. Freeman Dyson

Mathematics is a rigorous enterprise, whereby axioms are formulated and theorems are

explored using water-tight reasoning. In a similar vein, physical theories are formulated using

the language of mathematics and predictions are made. For those who insist that the job of a

physical theory is to explore nature, they are reminded that such theories have to be tested,

thanks to the ideas of Karl Popper [38]. They are thus reminded that a mathematically elegant

which does not explain facts is useless from an empirical point of view. Competing theories

are weiged using Occam�s Razor. Any mathematical theory or physical theory is, therefore,

accepted if it has best explanatory power (with best compression) using the most primitive

axioms. For us, the Hilbert Space requirement of Quantum Mechanics, though mathematically

solid (as we shall see), is too much to ask for.

In any physical theory, one needs to be able to precisely mention what physical states are

in a phase space, de�ne the evolution of such states and de�ne the measurement of observables.

Measurement is usually not a part of a physical theory and the headache is transferred to the

experimentalists. In particular, in classical physics, measurement poses no problem since it does

not in�uence the state of the system. In Quantum Mechanics, the situation is quite di¤erent
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and, therefore, such a need has to be taken into consideration, as well1.

A mathematical language for a physical theory is very important not only because ordinary

language is full of ambiguities but because ordinary languages instill in their use an interpreta-

tion. Any physical theory based on a mathematical formalism, and therefore of very abstract

nature, must be free of any interpretations or at least provide as little interpretations as possible.

In the latter case, the situation is of a great advantage if such interpretations are universally

agreed upon. Thus, the accommodation of a clear and well-de�ned notion of a state and an

observable with compatible mathematics describing the dynamics of the state ought to be the

aim.

For example, in classical mechanics, Newton�s laws come to the fore, with an equivalent form

in Hamiltonian mechanics. States are described by a position and a momentum coordinate

(q; p) with appropriate degrees of freedom in a compact phase space M (ensuring that the

�niteness of the human mind is not boggled), at least locally homeomorphic to the Euclidean

space (ensuring the applicability of calculus) and a symplectic 2-form, giving rise to the name

symplectic manifold M . More accurately, such phase state corresponds to a pure state and

with the tools to calculus available, a state of the system characterises questions (relating to

energy, momentum etc.) which can be asked and answered conclusively. This is because of the

associated di¤erential or integral equations of the system with initial or boundary conditions.

Thus, it turns out that these tools su¢ ce for everyday classical mechanics. Observables may

be described by continuous functions on M (thus depend upon the state of the system) so

that measurements can be made arbitrarily accurate: for any � error of observation we wish

to tolerate, we can be assured of �nding (q; p) at a ��distance of the "real" value (q0; p0). If

the observable turns out to be smooth (e.g. Hamiltonian), it makes life much easier as one can

avoid pathologies. At any rate, continuity assures that the function itself is nice enough for

analysis to take its stronghold and that, in principle, one can measure to an arbitrary accuracy.

In practice, the scale of classical mechanics is large enough to make uncertainities optimistically

trivial. It is when we go "down below" that things start to get fuzzy.

Any experimental apparatus simply obtains a value within some uncertainty. Consider a

1We shall forego the discussion of such a postulate because of its controversy. For an excellent coverage of
the measurement problem from a vantage point, see [27].
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simple length measurement in which, besides using a ruler, one might use lasers but this, too,

depends upon the wavelength which is determined by the frequency and velocity of the wave,

each of which has to be measured or calculated by making other measurements. In a stubborn

insistence, an accuracy to 20 digits is still not guarantee enough to allow for observables to

be described by continuous functions. Empirical considerations aside, such functions need a

mathematical structure to stand upon. For a simple three-dimensional system comprising of n

particles, one needs a 3n-dimensional Euclidean space. Our grandiose assumptions land us right

into trouble: gas dynamics and our current computation theories teach us that many problems

require resources greater than the universe can o¤er[1].

It is, therefore, wise to invoke averages of a measurement. This assumption, though clearly

needed for quantum mechanics, justi�es its use in classical mechanics since if repeated mea-

surements (assuming no changes to the system!) give (nearly) similar observations, then the

average stands close to what we observe each time, reduces random errors and provides us with

a very low standard deviation.

This approach rests on the supposition that an observable ought to yield a de�nite value

of a system each time it is observed and that the value is close to its "real value". This might

make Quantum Physicists subscribing to the Copenhagen interpretation cringe. One cannot

be agnostic to an interpretation of a physical theory. For Quantum Mechanics, there is an

array of interpretations of Standard Quantum Mechanics. For instance, in order to restore

determinism, Bohm�s wave mechanics comes to the fore. On the other hand as in [31], one

can give due consideration to density matrices altogether and not pure states to conform to

the tastes of the experimentalists. Quantum Mechanics can also be formulated as a branch

of statistics and information theory. It is not unnatural to expect a now popular opinion:

Quantum Mechanics is only seen as a statistical tool used to calculate probabilities, not to

make predictions [31]. Obeying a formalist school of thought is, in a mathematical sense, the

last resort when all other philosophies appear to be thick forests with roads going nowhere.

Worse is the case when there are di¤erent formalisms of Quantum Mechanics which stem from

di¤erent philosophies themselves.

In what follows, we shall lean halfway: for us, Quantum Mechanics is still a statistical

theory but with an added problem of interpreting our achieved results. Following Occam�s
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Razor, we shall start o¤ with the most general mathematical considerations stemming from

physical motivations and see where they lead us to.

Usually, the focus is on trying to de�ne a simple system and later on upping the ante by

forming a multi-dimensional space using the simple space via tensor products with the following

requirements [39]:

1. The tensor product should be linear in each factor so that change of basis in one factor

changes the basis in the resulting tensor product

2. The product of operators acting on each factor should have similar behaviour

3. An inner product which assures completeness (or can be completed) by corresponding to

the natural structure must be produced.

We begin by considering probabilities: in a spin-half particle, if x represents spin-up and if

y represents spin down and if the probabilities associated with them are, respectively, � and

�, then experimental work suggests that such a particle will exist in a superposition, if not

measured and left to evolve on their own, for otherwise, the experiment does not make sense.

This principle of superposition has stood the test of many experiments [4] and we shall adopt

it. Our starting point is, therefore, S = �x + �y with � + � = 1, an element of a vector

space. These "weights" may be negative and even imaginary, making the correspondence with

probabilities less intuitive2. The Manhattan Norm corrects this and satis�es kSk = 1, provided

that x and y are taken as our basis. Such a state is pure in the sense that maximal information

can be extracted from a (compatible) set of observables from such a vector. A mixed state,

which is a statistical mixture of pure states, is what we end up with if we take the outer product

of the vector with itself.

The eigenstates themselves are very important for a change of basis does not necessarily

guarantee a preservation of the norm3.

The Euclidean norm is usually selected for its experimental support of Born�s rule under the

lens of the Copenhagen interpretation. The geometric correspondence, comfortable association

2 In consideration of the length of the thesis a¤orded, we shall choose to stay silent on whether or not the
individual probabilities are a priori or not.

3See Example 3.1 in [24] for a counter example
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with intensity of a wave and use of unitary operators has customarily set this norm to Euclid�s.

As of now, we shall be liberal and, therefore, only require that kxk = 1. This requires a norm

to be de�ned on the vector space, or at least a semi-norm. The insistence not to have a non-

zero state with zero norm takes away the freedom of having a state perpendicular to itself.

In particular, it loses the correspondence to the Minkowski�s product and, therefore, starts o¤

badly without accord to General Relativity4. Our concern at the moment is with elements of

semi-norm one, only.

And now, for the natural question: under what conditions are x and y the basis? To

this, we start with the observation that eigenvalues have played a pivotal role in nearly all of

physics, inspired by a famous question of Mark Kac, "Can you hear the shape of a drum?"

[21], which gave rise to the di¤erential equation �u = �u. The approach to a possible solution

is deep: if one can know the eigenvalues, then the eigenstate is completely determined. Thus,

in some sense, an eigenvalue "pins down" the value of an eigenstate, implying a tremendous

computational ease if such (quantum) eigenstates are our basis for then the (semi-)norm of a

pure state will correspond to the total probability.

In vector spaces, operators are the natural candidates for de�ning the evolution of a state

and the observables. As far as the evolution is concerned, we need operators that do not

change the unit probability of the state as it evolves in time. We can make do with an isometric

operator but these are not necessarily compatible with the inner-product structure (more on this

later). Unitary operators serve this gap. We would also want operators that generalise the real

and complex numbers to correspond closer to the formulation of Classical Mechanics5. Normal

operators do the job for the latter and are even more general than unitary operators but for the

former, we have symmetric, self-adjoint and Hermitian operators. Which operator to choose?

The Uncertainty Principle, which is what makes Quantum Mechanics fundamentally di¤erent, is

a natural consequence of the fact that observables do not necessarily commute6, and, therefore,

not of primary concern. Our focus should be on the eigenvalues the operators produce. For

some vague reason, physicists are more comfortable with real eigenvalues. Hermitian operators

4See §5
5Technically, quantisation, which is a map Q from the algebra of continuous functions A to the space of linear

operators L (H)
6See §8.1
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are usually resorted to but this, in itself, incorporates linearity. In particular, Schrödinger�s

correspondence with the Hamilton-Jacobi equation has given away the impression that the

Quantum world is fundamentally linear, which has made (linear) di¤erential equations and

matrices the favourites of physicists. This is a subtle issue that is in direct contradiction with

measurement processes. Why must the evolution of a state be linear and deterministic and its

measurement be completely opposite? We remark that non-linear unitary, normal and adjoints

have been de�ned for Quantum Mechanics [13].

As a recollection, we add the oft confounded de�nitions:

T is symmetric if hTx; yi = hx; Tyi for all x; y 2 D(T ).

T is Hermitian if it is symmetric and bounded and D (T ) = H.

T is said to be self-adjoint if it is symmetric and D(T ) = D(T �).

T is said to be isometric if kTxk = kxk.

T is said to be unitary if it is a surjective isometry.

Here, D(T �) is the set of all y 2 H such that jhTx; yij � ky kxk for all x 2 D(T ). If T is

merely symmetric, it follows that D(T ) � D(T �). Regardless of boundedness or even complete-

ness, one can still de�ne an adjoint using a dense domain, without using Riesz�s Representation

Theorem7.

As far as observables are concerned, Quantum Mechnanics works neatly with eigenvectors

as a basis for the underlying space. For any operator A, not all vector spaces will furnish

the operator with an eigenvector basis. On Rn (Cn, respectively) an operator is symmetric

(normal, respectively) if and only if it admits an orthonormal basis of Rn (Cn, respectively)

comprising of eigenstates with eigenvalues from the underlying �eld [26]. The complex case is

inevitably involved because in the real case, an operator may have no spectral values [26]. In

fact, the spectrum of any (bounded!) operator on a complex space is non-empty and compact

[26]. Thus, a generalised move to the complex case is inevitable, which was provided by von

Neumann in what is now called the Spectral Decomposition Theorem: if the compact, linear

operator A is self-adjoint, then there is such a complete orthonormal system comprising of

non-zero eigenvectors of A. As a corollary, we can even decompose self-adjoint operators using

projection operators [26] which is where we get projection valued measures from and hence a

7See §5
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host of con�icting interpretations.

It is easy to de�ne the adjoint of any linear operator T even for Banach spaces: simply

de�ne g (T (x)) = (T 0g) (x) for any linear operator T for any linear functional g. This obeys

kT 0k = kTk by the Hahn-Banach theorem, for T 2 B (X;Y ) where X;Y are Banach spaces.

If T 2 L (X;Y ), then T 0 2 L (Y 0; X 0) by construction where X 0 = B (X;K) is the topological

dual. In such a case, we cannot compose these two operators, so we take Hilbert spaces instead

of Banach spaces where the composition of an operator with its adjoint can be de�ned.

Notice how swiftly we�ve shifted to a requirement of completeness! One reason why this is

needed is as follows: in a space where one can have a reasonable norm, completeness is equivalent

to the condition that every absolutely convergent series converges. In fact, the exponentiation

of an operator, which is a de�nite requirement for Schrödinger�s equation, may not be de�ned

if completeness were taken away.

Not only does one need a complete inner product space but a separable Hilbert space in

order to accommodate for a countable basis.

As of now, we are giving the impression that a Hilbert space is a phase space for quantum

mechanics. Nothing could be further from the truth because a phase space (x; p) � C2 of

position and momentum treats both on equal footing. In the words of Max Born, "at every

instant a grain of sand has a de�nite position and velocity. This is not the case with a [quantum

particle]" [10].

For a moment, let us assume that the observables ought to be represented by linear, self-

adjoint operators. In light of the success of Hamilton-Jacobi equation in classical mechanics,

Schrödinger suggested a now famous equation E = H which successfully explained electron

orbits for the Hydrogen atom [10]. In the stationary case, E is a real eigenvalue. A similar

equation holds for  =  (t) and E = i h2�
@
@t . The Hamiltonian operator H is constructed,

depending on the physical situation, as a sum of the total energy of the system. This will

involve kinetic energy and potential energy so that momentum and position are inevitably put

on the same footing. These observables are self-adjoint and since the sum of two self-adjoint

operators is self-adjoint, the Hamiltonian operator is self-adjoint.

By Stone�s theorem, there is a one-to-one correspondence between any (not necessarily

bounded) self-adjoint operator A and continuous (in the strong topology) one-parameter unitary
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operator U (t) such that U (t+ s) = U (t)U (s) by de�ning U (t) = e
2�i
h
tA where

e
2�i
h
tA =

1X
n=0

�
2�i
h tA

�n
n!

In e¤ect, a state  (t) evolves with time such that  (t) = U (t) (t0) where  (t0) is the

initial condition of the state. It is pointed out that this unitary operator is determined by

the Hamiltonian of the system. Applying the derivative (possible because of Stone�s theorem)

on both sides of this equation gives us the Schrödinger equation E (t) = H (t). Thus,

 (t) = U (t) (t0) if and only if E (t) = H (t)

Schrödinger�s picture (Wave Mechanics) requires the underlying Hilbert space to be the

space of square integrable functions. States are (wave) functions of unit norm and operators do

not depend on t. Hiesenberg�s idea (Matrix Mechanics) was that the state of a system does not

depend on t but the observables do. The only di¤erence is that the observables are not required

to be self-adjoint so that we are not guaranteed (eigen)basis of our choice. This corresponds to

an active transformation and a passive transformation, with equivalence established via Stone�s

theorem8.

Since non-determinism is fundamental to our approach, we must have a way of determining

the expectation value for any observable A. In case the vectors and the scalars are of the same

nature (i.e. the vector space is a �eld over itself), then the answer is straight-forward: for any

quantum state x, we multiply all the probabilities with the eigenvalues � of A associated with

x and add them up. What are these probabilities? So far, we have not spoken of probabilities

but only of weights of any unit vector. These weights become probabilities once we take the

square of their absolute values, thanks to Gleason�s theorem, with the only requirement being

that the underlying space be at least three dimensional and that kxk = 1. Where do we get this

from? To answer this question, we move to the case where the vector space is a not a �eld over

itself. The expectation value has to be a linear functional. By Hahn-Banach theorem, we are

guaranteed a linear functional g such that kgk = 1 and g (Ax) = kAxk � kAk, which is (or its

additive inverse is) an eigenvalue of x. What if we do nothing to the state (i.e., A = I)? In such

8Dirac went a step ahead and assumed that both states and observables vary with t (interaction picture),
which formed the basis of Quantum Field Theory.
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a case, we must expect kAxk = 1 = hx; xi. By Riesz Representation theorem, this functional

can be an inner product such that g (Ax) = hy;Axi where kgk = kyk. What, indeed, is y? If

y 6= x, then for A = I, we arrive at a contradiction to the required de�nition of expectation

value in general and Gleason�s theorem in particular. Thus, y = x.

As of now, we have settled the fact that a pure state is an element x of a Hilbert space H

such that kxk = 1, in�icting a pinch to the liberty of using all of that which is not forbidden but

rather by reasoning that a Hilbert space and its beauties place us at an advantage. However,

the argument to require a norm and not semi-norm is rather not convincing at the primitive

level of the axioms. We also have a sloppy rationale for de�ning observables. Whatever the

de�nition of observables, we know that not all of them are compact: from [Q;P ] = i h2� I, it

follows that tr (QP ) � tr (PQ) = i h2� = 0, a contradiction (trace is only de�ned for compact

operators). Thus, some observables will then not map compact sets to relatively compact sets

and, therefore, will be unbounded. This seems to be like less of a trouble for physicists, even

though unbounded operators may have an empty spectrum, even in the complex plane [26].

At any rate, the set of states according to our de�nition, is a closed unit ball, which is not

precompact in the in�nite dimensional case by Riesz�s lemma under the norm topology. With

this, we can not guarantee the existence of an orthonormal sequence (en) such that for any state

x, a series of hx; eni converges, provided H is separable9. In fact, for any orthonormal sequence,

using the fact that � j�nj2 converges if and only if ��nen converges (in which case Parvesal�s

relation and hence the norm by Gleason�s theorem may fail, unless the orthonormal sequence

is complete), we cannot even guarantee the Fourier expansion of any element! Worse yet is

the nightmare when physicists usually replace self-adjoint operators with Hermitian ones. It

seems as thought physicists are not concerned with the behaviour of operators on vectors other

than those belonging to the unit ball. To dash further folklore regarding Hermitian operators,

recall that such operators are densely de�ned. It is possible for two operators to have a dense

but disjoint domain and corresponding range, in which case the composition of the operators

becomes rather meaningless. The arguments involving trace of a compact operator is put to

9Let E be a precompact subset (in the norm topology) of an in�nite dimensional, separable Hilbert space.

Then there exists (en) such that
1X
n=1

hx; eni <1 for all x 2 E
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test as well: the trace of the identity map is in�nity in an in�nite dimensional Hilbert space.

There are some interesting consequences of introducing time as a parameter, not as an

observable. Assume there was one T . Given the standard formalism of Quantum Mechanics, we

should expect that T (t) = t (t) but then this multiplication operator has an empty spectrum

on L2 [0; 1]. If this operator were symmetric, then we are still not guaranteed a real spectrum.

Thus, time is taken as an intrinsic and non-relative parameter and not a dynamic variable,

standing in direct contradiction to the basics of General Relativity in particular and against

a common philosophical point of view, in general: since measurement irreversibly changes the

state of the system, therefore upon a measurement of "time", the state of the system after the

registration of the �rst arrival is no longer causally related to the initial state of the system or

even just before the measurement was made. In essence, measurement rips apart the philosophy

of causality.

According to Derek Lawden [29], it su¢ ces to assume the eigenvalue/eigenvector approach

where eigenvalues represent measurement outcomes. We associate with a quantity A the eigen-

values a1, a2, ... and eigenvectors  1,  2 , ... and with a compatible quantity B the eigenvalues

b1, b2, ... and eigenvectors �1, �2 , ... . Any mutually compatible set of quantities are assumed

to completely describe a quantum system if (a) the results of none of the procedures can be

inferred from the results of the others and (b) there exists no other procedure compatible with

every member of the set, whose outcome is not derivable from the results of observations be-

longing to the set. This sense of completeness is attributed to Niels Bohr. It is to be remarked

that completeness for Einstein meant that the state provides all the necessary information of

a quantum system (the idea of a pure state). In order to study dynamics, the problem is to

then compute the probabilities that the system moves from an initially observed state  i to �j .

Symbolise these as Pij = P
�
 i �! �j

�
with the following assumptions:

1.
X

Pij = 1

2. P
�
 i �!  j

�
= �ij

3. P
�
 i �! �j

�
= P

�
�j �!  i

�
Any proposed dynamic law, apart from being able to determine probabilities P ( i �! �i)

and P (�i �! �i) must also apply to a third, compatible quantity C with eigenvalues c1, c2,
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... and eigenvectors �1, �2 , ... . It turns out that these su¢ ce under the machinery of a

Hilbert space with unitary and self-adjoint operators being a natural consequence. The �rst

two assumptions are rather natural, given that probabilities are de�ned as in (1) and that every

observable has an orthonormal decomposition of eigenvectors. The third is perhaps the most

troubling, with a direct contradiction to the second law of thermodynamics in the global level.

Furthermore, since our idea of a pure state is a vector x of seminorm one, it follows that

we cannot distinguish between x and �x where � is a scalar such that j�j = 1. For instance,

consider adding a phase global ei�.

Merely three years after setting a rigorous foundation of Quantum Mechanics, von Neumann

himself is known to have had doubts regarding the use of Hilbert spaces in Quantum Mechanics.

We quote a famous line, which summarises our arguments thus far:

I would like to make a confession which may seem immoral: I do not believe

absolutely in Hilbert space any more. After all, Hilbert space was obtained by

generalising Euclidean space, footing on the principle of �conserving the validity of all

formal rules�. Now we begin to believe that it is not the vectors which matter, but the

lattice of all linear (closed) subspaces. Because: 1) The vectors ought to represent

the physical states, but they do it redundantly, up to a complex factor, only 2) and

besides, the states are merely a derived notion, the primitive (phenomenologically

given) notion being the qualities which correspond to the linear closed subspaces

[40].

There are three notable successors to the Hilbert space formalism, initiated by von Neumann

himself: the algebraic approach to quantum mechanics, quantum logics and rings of operators.

The �rst approach is a particular algebra derived without the associative law �an approach

which has begun to �nd experimental support [9]. The second has perhaps exceeded in produc-

ing most literature as it is a shift from sharp (eigen)values to closed subspaces themselves. In

particular, the lack of correspondence (with the distributive law) identi�ed by von Neumann

was startling and suggested that Quantum Mechanics fundamentally obeys a di¤erent set of

logic10. Of substantially greater success is his last notable contribution to the foundations of

10See §6.1
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quantum theory, now von Neumann algebra or W�-algebra, a weakly closed subalgebra of C�-

algebras (C stands for compact, a reference to the Banach-Algalou theorem), also known as an

exceptional Segal algebra. These have the added advantage of easily accommodating an in�nite

quantum system. The key di¤erence between Segal algebra and von Neumann algebra is that

the former is uniformly closed whereas the latter is weakly closed.

From an empirical point of view, an algebra is necessary so that we can perform repeated

measurements of observables. That is, we can form the sum and product of two observables to

get another observable. One ought to be able to scale an observable as well: we would de�nitely

want an experiment performed at CERN to be replicated in a small lab. Thus, our observables

must be closed under scaler multiplication as well.

Instead of focusing on elements of a Hilbert space as states, the C�-algebraic approach

targets observables by de�ning a canonical algebra of bounded operators B (H). Of course

this has the danger of excluding the momentum operator P for its unboundedness but there

is a way: exponentiation. Then, eiP is not only bounded but also unitary, thanks to Stone

and von Neumann�s theorem. This approach itself has the advantage of being coordinate free.

States in such a setting are positive, unit-preserving functionals ! de�ned on B (H) of norm one

instead of vectors. Thus, states assign expectation values ! (A) = tr (�A) where � a density

operator obtained by taking the outer product of a vector with itself. This approach, too,

has its limitations. In particular, one cannot take the expectation value of two observables

combined11. There are ways to achieve a correspondence with the Hilbert space approach via

the GNS construction12. With this, we are guaranteed the existence of a vector corresponding

to the vacuum state in particular and of a Hilbert space H in general. Thus, H corresponding

to a quantum system can be recovered from the observables of the system. Mathematically,

therefore, Einstein�s and Bohr�s approach are same sides of one coin.

There is a particularly striking observation of B (H) which goes thus: such an algebra is

non-commutative if and only if dimH > 1 i.e. if the underlying Hilbert space is not a subspace

of the real line, then observables are bound to follow the Hiesenberg uncertainty principle so

the only way one can "recover" Newton�s physics from Quantum Mechanics is by building

11See §5
12See §8.2
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a correspondence of the machinery of Quantum Mechanics with the real line � this is where

the expectation values come in but only for operators with real eigenvalues. This piece of

mathematics suggests that the decoherence approach is perhaps best suited as an explanation

for a relationship with classical mechanics.

Even with all that standing, we have still remained silent on the choice of the underlying

�eld and, therefore, the admitted topology. Quantum Mechanics is usually formulated on a

complex �eld, which are weights (probability amplitudes in the Copenhagen interpretation),

technically scalars. For classical mechanics, observables are real-valued functions so that even

their expectation values are real. In Quantum Mechanics, this is described by self-adjoint

operators, whose expectation values are real. A modi�ed version of Quantum Mechanics can

also work with H and O. The latter, being non-associative, needs specialised algebra. Indeed, the

associative algebras (R, C and H) were determined to be on equal footing with a classi�cation

theorem:

Theorem 1 Every normed division �-algebra is isomorphic to either R, C, H or O[46]

However, there are some subtle issues. For example, the tensor product of two Hilbert spaces

over H is not a Hilbert space [6] and, therefore, such a quantum mechanical theory will only be

valid for only the simplest of systems, though there are non-standard ways around this [39].

All in all, we see that self-adjoint operators pose technical problems (let alone Hermitian

operators) and that the popular axioms of Quantum Mechanics are a result of a negation of the

second law of thermodynamics. The idea of linearity in Quantum Mechanics is also illusory:

the Schrödinger equation tells us that the observable A evolves as eiAt but then the observables

A + B do not evolve with the phase ei(A+B)t unless A and B commute under multiplication.

We can get as far as the following: the "mean" value of A and B combined is equal to their

individual values.

Given the resources a¤orded for this thesis, we shall only attempt at answering two ob-

jections: one, why must sharp eigenvalues be considered? Two, why must the underlying �eld

be the �eld of complex numbers? Thus, our approach will be as follows: we shall consider

not necessarily linear operators over generalised �elds and see how far the above reservations

disappear.
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Chapter 3

Preliminaries

The following sets basic terminology and de�nitions necessary for the main aim of this thesis.

Most of the de�nitions are fairly elementary but are only included for consistency. Furthermore,

for the sake of not converting this report into a set of notes, we exclude from this section various

results. With this section, however, we hope to draw a route for the machinery of Quantum

Mechanics with as little assumptions as possible. Knowledge of �eld theory is assumed but

cited where necessary. De�nitions can be found in [26] and [15].

De�nition 2 Let n 2 N. An n-ary operator (or a �nitary operator) on a non-empty set S is

a function � : Sn �! S

In such a case, S is said to be closed under �. For the special case of n = 0, called the

nullary operation, S0 := f()g, i.e. only one "n-tuple". A function, by de�nition, maps each

element of the domain to exactly one element of the codomain. The nullary operation (an

empty function) will map all elements of the empty set �which are non-existent �to S. Thus,

the empty function will vacuously assign a value of the complete set to one single value (by

de�nition of function) of S. This implies that the empty function is unique �a function that

accepts no arguments and returns only one single value. We, therefore, assign a unique value

� (?). Thus, S is also said to be closed under the nullary operator by vacuous reasoning.

De�nition 3 Let A be a non-empty set. An algebraic system or an algebra is a tuple (A;O)

with an operator set O elements of which act on A
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We assume that operators are not multivalued and are n�ary. This assumption will be

justi�ed in §5. O is always non-empty since it will contain at least the empty function. An

example of such an algebraic system is a group G with O = fê; �; {̂g where {̂ is an 1-ary operator

such that {̂ (x) = x�1. The operator e is nullary with range G and, �nally, � is our familiar

friend, the binary operator. A �eld does not form an algebra since we must have a restriction

on the multiplicative inverse operator.

A non-empty subset B of A is called a subalgebra (B;OB) if it is closed under the same

n-ary operations it inherits. Technically, OB � OA with the restriction that the domain of the

operators in OB is restricted to that of B.

The condition for A being non-empty is not technical and can be omitted but is only written

out of laziness to avoid entering into details of empty functions applying on empty sets. This,

however, does not technically stop us from asserting that an arbitrary intersection of subalgebras

is an algebra since we�ve de�ned subalgebras to be non-empty sets themselves.

3.1 Order

The machinery of Quantum Mechanics (e.g. expectation values) requires an ordered vector

space, which in turn needs an ordered underlying �eld, whether Archimedean or not (see Def-

inition 8). Since we are assuming generalised �elds, we shall need the following basic notions.

De�nition 4 A prepositive skew �eld (K;+; �) is a skew �eld which contains a subset C � K

such that

C1 x; y 2 C implies x+ y; x � y 2 C

C2 8x 2 K, x2 2 C

C3 �1 62 C

Clearly, 1 2 C. Some authors explicitly exclude 0, referring to the latter as a blunt cone.

In our case, 0 2 C, which gives a sharp cone.

Also, x 2 C =) x 2 K =) x�1 2 K. By C1, x�1 2 C. Hence Cn f0g is a multiplicative

subgroup.
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If K = C [ �C and C \ �C = f0g where �C = f�x : x 2 Cg, then C is called a positive

cone of K. x 2 Cn f0g is called positive. At �rst sight, it might not be obvious but this

de�nition leads to the usual:

De�nition 5 A skew �eld (K;+; �) together with a total order � on K is an ordered skew

�eld if the order satis�es

O1 if a � b then a+ c � b+ c

O2 if 0 � a and 0 � b then 0 � a � b

To show that this approach is equivalent to the former, we �rst derive some necessary results:

for every a 2 K, either �a � 0 � a or a � 0 � �a.

Proof. If a = 0, then there is nothing to prove. Assume a 6= 0. Since � is a total order,

hence for any a 2 K, either a � 0 or 0 � a. We assume both do not hold simultaneously since

otherwise by antisymmetricity, a = 0, which we�re not considering. Focusing on a � 0, then by

O1, a� a � 0� a which implies 0 � �a. Together, a � 0 � �a. The second conclusion follows

similarly.

Also, for any a; b; c; d 2 K, we are allowed to "add inequalities": if a � b and c � d, then

a+ c � b+ d

Proof. a � b and c � d imply 0 � b� a and � d� c by O1. By O1 again, 0 � b� a+ d� c

so that a+ c � b+ d by O1 again.

We are also allowed to "multiply inequalities with positive elements": if a � b and 0 � c,

then ac � bc.

Proof. By hypothesis, it follows that 0 � b� a and 0 � c: By O2, 0 � (b� a) c = bc� ac.

The result follows by O1 after adding ac on both sides.

Lemma 6 An ordered skew �eld has characteristic 0.

Proof. Since 0 � 1, then 0 � 1 + 1 ad in�nitum. If the skew �eld had characteristic pk for

some prime p and natural number k, then �1 = p� 1 � 0, a contradiction.

We now show that the positive cone approach and the order approach are equivalent.

Lemma 7 There exists a bijection between the positive cones of K and total orderings on K
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Proof. We �rst show that each positive cone gives rise to a total order on K. Let x; y 2 C.

De�ne x� y 2 C () y �C x

Since x � y is well-de�ned based on the axioms of a skew �eld, therefore the equivalence

is well-de�ned. Next, 0 2 C hence 0 = x � x 2 C so that �C is re�exive. Let x �C y and

y �C x. Then, x � y;� (x� y) 2 C. That is, a;�a 2 C. This is only possible if a = 0 since

C \�C = f0g. Hence x = y. Furthermore, let x �C y and y �C z. Then, y� x; z � y 2 C. By

C1, y�x+z�y = z�x 2 C, which satis�es transitivity. Finally, let x; y 2 C. Then, x�y 2 K.

Since for every a 2 K, �a � 0 � a or a � 0 � �a holds, it follows that either x � y 2 C or

y � x 2 C. In either case, x is related to y.

Next, we show that each total order gives rise to a cone. This is possible when we de�ne a

subset C of K such that x � 0 () x 2 C

It follows that b � a � 0 () b � a 2 C. Let a; b 2 C. Then, either a � b or b � a since

K is a totally ordered skew �eld. We focus on only the �rst case. The proof for the second is

similar. a � b =) 0 � b� a 2 C. Since a � 0, then 0 � b� a � b+ a 2 C

Also, by O2, ab 2 C. Hence C1 holds. Next, for any a 2 K, either a � 0 or 0 � a. In the

latter, by O2, a2 � 0 applied on a twice. In the former, a � 0 =) 0 � �a by O1 and hence

0 � (�a)2 by O2 =) a2 2 C. Now, for �1 2 K, either �1 � 0 or 0 � �1. In the former, C3 is

satis�ed trivially. Assume the latter holds. Then, by O1 1 � 0 =) 1 62 C but then if 0 � �1,

then (�1) (�1) = 1 2 C, contradiction. Hence 0 6� �1.

De�nition 8 An Archimedean ordered skew �eld is an ordered skew �eld K which obeys

the Archimedean Property: 8x; y 2 K, 9n 2 Zn f0g such that nx � y

Compounded by the well-ordering principle, if K is an Archimedean ordered skew �eld, we

can de�ne a bracket function [x] to be n � 1 where n is the least n 2 Z such that x � n.

An ordered skew �eld that does not satisfy the Archimedean property is said to be non-

Archimedean ordered skew �eld: if there does not exist a natural number n for positive

x,y such that nx < y. In other words, if 0 < yx�1 < n�1 for all n ( yx , provided we have

commutativity), then we have an in�nitesimal, which is an element � such that 0 < � and

� < r for every positive r 2 K. By de�nition, an in�nitesimal number is not a real number

but belongs to an extension of R, �R, called the �eld of hyperreal numbers. Thus, negating
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the Archimedean Property leads us to numbers which are smaller than any positive number

one can ever imagine. We shall not deprive ourselves of this excitement at all costs even if

such "evanescent" quantities are not �rst order and, therefore, not a part of ZFC [32]. For us,

our �elds are ordered and we shall stay silent on the existence of in�nitesimals but are only

considered in §6.2.

Any ordering compatible with a skew �eld does not need to obey the Archimedean property,

an example of which is the �eld of rational functions with real coe¢ cients, apart from the

example of the hyperreals.

3.2 Vector Algebra

For de�nition of vector space, see [26], which we shall call K-vector space with K acting on the

left and right, which we will always assume coincide. Fortunately, when it comes to Hilbert

spaces, such actions are not limited to one side, even for skew �elds (see Proposition 3.4b of

[35]). If K = R or C, then we shall call such a space linear. A vector space is an algebra in the

sense of De�nition 3 with O =
�
1̂; 0̂; ��;+

	
where �� is a family of unary scalar multiplication

operators for each �.

We can consider an order on a vector space as follows.

De�nition 9 Let V be a vector space over an ordered skew �eld K. A cone is a subset of a

vector space V such that x;y 2 M implies �x+�y 2 M for any x 2 M and 8�; � 2 K such

that 0 � �; �

IfM \ (�M) = f0g, then the cone is said to be positive. In order to see that this induces an

order on the vector space, we must de�ne an order on a vector space �rst which is compatible

with the vector space structure: a vector space V over K is said to be ordered under � if for

all x;y; z in V and 0 � � 2 K, we have that x � y implies x+ z � y + z and if y � x implies

�y � �x. A positive cone de�nes a pre-order on V by de�ning x � y () y�x 2M . In such

a case, we say that x � 0 () x 2M , following a similar series of steps for �elds as above.

That is, � is binary relation that is symmetric, re�exive and transitive i.e. a partial order. We

use Zorn�s lemma to extend partial orders of a vector space to a total order.
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For a vector space V over K equipped with an additional binary operation � : V � V �! A

is a vector K-algebra if the following identities hold for any three elements x;y, and z of V ,

and all scalars � and � of K

1. (x+ y) � z = x � z+ y � z (Right Distributivity)

2. x � (y + z) = x � y + x � z (Left Distributivity)

3. (�x) � (�y) = (��)(x � y) (Compatibility with scalars)

These three axioms are another way of saying that the binary operation is bilinear. This

binary operation is often referred to as multiplication in V . Some vector spaces are naturally

algebras. For example, for the vector space C [a; b] of continuous functions, the ordinary (point-

wise) multiplication of functions satis�es the above. A more popular example is the space l2 (R)

by de�ning point-wise multiplication of sequences. Unfortunately, this space does not posses

the identity (1; 1; :::) where an identity is a vector e such that xe = x = ex for all x 2 V . An

algebra is commutative if ab = ba for all a;b. If vector multiplication is associative and if

there are inverses such that x�1x = e = xx�1, then V is an associative division algebra.

Fortunately, von Neumann has had a way to make an algebra without the need of associativity

[20].

We can also order an algebra as follows:

De�nition 10 A K-algebra V together with a total order � on V is an ordered K-algebra if

the order satis�es

O1� if x � y then x+ z � y + z

O2� if 0 � x and 0 � y then 0 � xy

O3� if 0 � y and � � 0, then 0 � �y where � is an order on the skew �eld.

Again, this gives rise to a cone M such that M \ �M = f0g and M [ �M = V

De�nition 11 If X is a vector space over K, then, a functional or linear form or 1-form

is a mapping g : X �! K such that g (x+ y) = g (x)+ g (y) and g (�x) = �g (x). A functional

is said to be positive if for every positive element v 2 X, g (v) � 0. A linear functional is said

to be multiplicative if g (x) g (y) = g (xy), provided V is a K-algebra.
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Example 12 For A = Cn, fi (z1; z2; :::; zn) = zi and for X = C (
) where 
 is compact

Hausdro¤, Fx (g) = g (x) is the default functional on C (X) [28]

There are two requirements for the second de�nition: an order should exist on the vector

space and that the underlying �eld must be ordered as well. This, therefore, excludes �nite �elds

and even the complex numbers and "beyond" since they do not admit a compatible ordering1.

There is an interesting characterisation of linear functionals being multiplicative: in the

commutative case for K = C, g 2 �(X) () g (x) 2 �(x) = f� : x� �e 62 G (X) and � 2 Cg

where G (X) =
�
x 2 X : x�1 2 X

	
and �(X) is the collection of multiplicative linear func-

tionals on X [22].

3.3 Semi Norms

De�nition 13 Let N be a vector space over F. A norm on N is a real-valued function k:k :

N �! R such that

N1: kxk = 0 =) x = 0 (non-degneracy)

N2: k�xk = j�j kxk for all � 2 K, 8x 2 N (homogeneity)

N3: kx+ yk � kxk+ kyk for arbitrary x;y 2 N (triangle inequality) if K is Archimedean

N3�:kx+ yk � max (kxk ; kyk) (strong triangle inequality) if K is non-Archimedean

A vector space together with a norm de�ned on it is called a normed space. If the space is

complete under the given norm, then the norm algebra is referred to as a Banach Space. If we

take away N1, we are left with what is called a seminorm. Thus, all norms are seminorms. It

is safe to say that every functional g gives rise to a seminorm k:k such that kxk = jg (x)j where

j:j is the absolute value of an element g (x) of the underlying �eld, provided the underlying �eld

has an absolute value de�ned on it.

Absolute values on Archimedean �elds are functions j:j : K �! R satisfying jxj = 0 ()

x = 0, jxj � 0, jxyj = jxj jyj and jx+ yj � jxj + jyj. Non-Archimedean �elds instead satisfy

the strong triangle inequality jx+ yj � max (jxj ; jyj) which is an equality if jxj 6= jyj. Thus, an

absolute value is trivial if jxj = 1 for all non-zero x. In such a case, the trivial seminorm is then

1As a set, however, any �eld, �nite or in�nite, will admit a (well-)ordering without a particular construction,
thanks to the Axiom of Choice.
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kxk = 1 for all x whereas the trivial norm further requires that kxk = 0 for x = 0. Non-trivial

absolute values give rise to a metric by de�ning d (x; y) = jx� yj and we can meaningfully talk

about (weak) convergence in a vector space.

A seminorm space N is expanded to a norm space N=W by taking a collection W of all

vectors v such that kvk = 0. A new norm has to be de�ned: kx+WkN=W = kxkN for all

x + W 2 N=W . Thus every vector space over a �eld admitting an absolute value can be

converted into a norm space. Using the axiom of choice, every �eld can have a valuation

and, therefore, every vector space admits a seminorm. Such arguments, however, only force a

norm on a vector space even if there are technical con�icts with the natural structure of the

vector space such as the induced norm may not coincide with the topology on the topological

vector space. In particular, the metric may not be translation invariant and, furthermore, may

be unbounded. Even if the topologies coincide, it may be that the two norms may not be

isometric: for instance, the supremum norm and the usual norm on R2 because in one topology,

the "unit ball" is a circle but in the other is a square (though topologically homeomorphic).

Apart from topological considerations, completeness is compromised as well: the forced norm

on the space of smooth functions from R to R is never complete. Therefore, one must be careful

in choosing a norm which respects the algebraic, analytic and topological structure.

Lemma 14 For any seminorm space N and x 2 N , the following hold

1. k0k = 0

2. kxk = k�xk

3. kxk � 0

Proof. 1. k0k = k0xk = j0j kxk = 0

2. k�xk = j�1j kxk = kxk

3. 0 = kx� xk � max fkxk ; k�xkg = kxk

Alternatively, kx� xk � kxk+ kxk = 2 kxk and hence 0 � kxk

These axioms are usually included in the part of the de�nition of a norm space for brevity

but as we can see, these are actually derivable for both Archimedean and non-Archimedean
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�elds, even for seminorms. In the remainder of this report, we shall use k:k to stand for a

seminorm.

A seminorm on an algebra which respects the algebraic, analytic and topological structure

only if

kxyk � kxk kyk

holds for all x;y apart from the other stated axioms. In particular, one has this submultiplica-

tive property even for K-algebras equipped with a seminorm provided that
x2 = kxk2 for all

x[7].

It also follows that kek � 1, provided that the K-algebra is unital.

Proof. kxk = kxek � kxk kek

kek � 1

Such an algebra is called a semi-normed algebra. If the underlying space is complete,

then the space will be called aWeak Banach Algebra.

A frequently occurring example is that of the space B(X;Y ). In order to glue this concept

to that of a semi-norm space, we must wait until we justify the use of such operators in the

context of Hermitian spaces.
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Chapter 4

Algebraic decomposition of vectors

A linear combination of non-zero vectors x1;x2 ; :::;xn is linearly independent in a vector

space V if �1x1+�2x2+ :::+�nxn = 0 () �i = 0 8i [26]. A vector space V is said to have

dimension n, written dimV = n, if every vector x 2 V admits a decomposition in the form of

a linear combination of a linearly independent set of exactly n vectors. This n has a great deal

of theory �xed behind it but before we say a few words, we show that this de�nition does not

just apply to ordinary physical vectors we�re used to: consider xi (t) = ti 2 C [a; b] for i 2 N

and t 6= 0 such that
nX
i=1

�it
i = 0

If a �nite polynomial is equated to zero, when are all the scalars zero? High school training

has primed us to impulsively �nd roots of this polynomial. One root, clearly, is t = 0 �not

the kind of thing we�ve de�ned. For �; t 2 R or Q, we cannot always factor this polynomial.

Thus �i = 0 is a possible solution and we�re done with �elds which are not algebraically closed

(we won�t have to consider the case of �nite �elds, which are not algebraically closed). In case

we have an algebraically closed �eld, we�ll have non-zero scalars with t 6= 0 such that we have

a linearly dependent combination. The trick is to see that this cannot be repeated forever for

otherwise we arrive at the contradiction that the �eld is not algebraically closed.

For our purposes, one importance lies in the following justi�cation of Quantum Mechanics

being a linear theory: consider the (homogenous) Schrödinger equation which has two linearly

independent solutions. These are known to form basis for a family of solutions since the equation
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itself is linear.

We also take this occasion to suggest a similar treatment for a K-algebra as follows: vectors

x1;x2; :::;xn of the form
X

�ijxixj will be called a multiplicative linear combination and

will be multiplicatively linearly independent if
X

�ijxixj = 0 implies �ij = 0.

Let X be a (not necessarily �nite) subset of a vector space V . Consider [X], the collection

of all subalgebras of V containing X. This is non-empty since V 2 [X]. Closure property of

algebra implies that linear combination of elements of X are contained in elements of [X]. If

V is an algebra, then [X] also consists of a multiplicative linear combination, as well. Now,

X �
\

A2[X]
A := hXi

This subalgebra is called the algebra spanned by or generated by X and X is called its spanning

set. The algebra hXi is the smallest algebra containing X for if there were another algebra Y

containing X, then Y 2 [X] and by construction, Y � hXi. If hXi = V , whether multiplication

is de�ned on V or not, then X is called a basis. The tensor product of two vector spaces V , W

with V = hXi and W = hY i is V 
W = hX � Y i, whether or not the underlying �elds are the

same since the tuples are treated distinctively. This, though, is a topological catastrophe, which

can be by-passed by requiring the underlying respective �elds to have a valuation preserving

morphism.

IfX is a basis and if every if every �nite linear combination ofX is linearly independent, then

X is called a Hamel basis. X will be called an m-Hamel basis if every �nite multiplicative

linear combination of X is multiplicative linearly independent. In both cases, every vector in

V can be written as a �nite linear/multiplicative-linear combination of elements in X. The

rationale for considering only �nite linear combinations is as follows: if X is countable and if

all we need is a linear/multiplicative-linear combination of vectors in X, then we�re left with a

series which raises serious questions of convergence and, therefore, requires a metric. Contrarily,

if X is uncountable, then the sum always diverges and is, therefore, not de�ned in the �rst place.

Example 15 Instead of 1; i; j; k as Hamel basis for the quaternion algebra H over R, we can

have i; j because then ij = k and i2 = j2 = �1 generates the quaternions. i; j are multiplicative-

linearly independent.
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Example 16 Instead of e1 = (1; 0; 0), e2 = (0; 1; 0) and e3 = (0; 0; 1), we can have x = (1; 0; 1)

and y = (0; 1; 1) and using point-wise multiplication, we get (1; 0; 1) (0; 1; 1) = (0; 0; 1) = z. The

tuples x; y; z are linearly independent whereas the tuples x and y are multiplicatively linearly

independent.

X is a basis if and only if X is minimal. That is, deletion of any element from X, except 0

if 0 2 X, does not form a basis

Proof. Let Z = Xn fvg. For the sake of contradiction, assume hZi = V . Since Z � X, we

must have hZi � hXi but then V � V

Conversely, suppose X is minimal but not a basis. Then, there exists v 2 V such that

v cannot be formed out of �nite algebraic operations of elements in X. This implies hXi =

hXi n fvg = hXn fvgi. If v 2 X, then we contradict the minimality of X. If v 62 X, then for

any binary operation T on V , T (x;v) 2 V for x 2 X =) v 2 hXi =) V � hXi so that

V = hXi. That is, X is a basis and not a basis, another contradiction. Thus the supposition

that X is minimal and not a basis leads to contradictions, implying that the negation "either

X is not minimal or X is a basis" is true. That is, X is minimal implies X is a basis.

Lemma 17 For any two basis X, Y of V , jXj = jY j

Proof. Without loss of generality, assume jY j + m = jXj for m > 0. Using a mapping

between X and Y , we can observe that m elements can be deleted from X to form a basis. This

contradicts the minimality of X.

If X and Y are both countable or uncountable, then the above proof fails. The countable

case does not bother us since a Hamel basis, if in�nite, is always uncountable1. The trouble

is always with the uncountable case. Now, assuming the Continuum hypothesis, if jXj > jY j,

then jY j is �nitely countable (we�re excluding the in�nitely countable case) but then hY i = V

implies dimension of V is �nite, a contradiction.

It is easy to see that every subset of a multiplicatively linearly independent set is mul-

tiplicatively linearly independent. Since that sounds like a mouthful, we will now shorten

multiplicatively linearly independent to m-linearly independent.

1For instance, consider the vector space of real sequences.
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Every m-Hamel basis gives rise to a Hamel basis

Proof. Let H be an m-Hamel basis. Then, for every A = fx1; :::;xkg � H,
X

�ijxixj = 0

implies �ij = 0 for 1 � i; j � k. Now, let xixj = xl. Then,
X

�lxl = 0 implies �l = 0 for

1 � l � k

Can we be assured of the existence of a smallest set X satisfying hXi = V ? For this, it

su¢ ces to prove that every algebra possesses an m-Hamel basis because we have already seen

that if hXi = V = hY i, then jXj = jY j

Proof. Let L be a set of L m-linearly independent subsets of an algebra V over K. This

is non-empty since every vector itself is trivially m-linearly independent. It is easy to see

that under set inclusion, L is partially ordered. For every totally ordered set C � L, de�ne

Ĉ =
[
C�L

C. Clearly, Ĉ is an upper bound of every C. To verify that Ĉ is an element of L, Let

X = fx1;x2; :::;xng � Ĉ be a �nite collection of vectors. Then there exist sets L1; :::; Ln 2 C

such that xi 2 Li for all 1 � i � n. Since C is a chain, every Li is related. We can de�ne a

join-lattice (C;[) by letting Li [ Lj = Li () Lj � Li for any 1 � i; j � n. Thus, there is

a number k with 1 � k � n such that C 3 Lk =
n[
i=1

Li and thus X � Lk, that is X 2 C and,

therefore, is m-linearly independent. Since X was arbitrary, therefore Ĉ 2 L.

According to Zorn�s lemma L, has a maximal element M which is m-linearly indepen-

dent. We show now that M is a m-Hamel basis. Assume there exists an v 2 V n hMi. Let

fv1; :::;vng � M be a �nite collection of vectors such that
X

�ijvivj = 0 where �ij 2 K.

Since v 2 V , we must have �v =
X

�ijvivj for some �ij 2 K

If � = 0, then �ij = 0 for 1 � i; j � n, making fvg [ M m-linearly independent in

contradiction to the maximality of M . If � 6= 0, we would have

v = ��1
X

�ijvivj

But this implies the contradiction v 2 hMi. Thus such an v does not exist and V = hMi,

so M is a generating set and hence a m-Hamel basis.

Thus, it makes sense to de�ne dimV = jXj if V is a vector space. If V is an algebra, then

we will call m-dimV := dim (V ) = jXj (corresponding to m-Hamel basis). From the above

discussion, it follows that dim (V ) � dimV
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Problem 18 Find k such that dim (V ) + k = dimV

Leaving this problem for future generations for lack of skills in combinatorial arguments,

we show that these basis have connections to analysis

Theorem 19 A totally ordered division K-algebra over a skew �eld is K.

Proof. Consider a positive non-trivial multiplicative linear functional f : V �! F. This

is surjective since for any � 2 F, �e 2V . Now, let f (x) = f (y). Then, since for any positive

x 2 V , we have x =
X

�ijvivj , hence we have
X�

�ij � �ij
�
f (vi) f (vj) = 0 where x =X

�ijvivj and y =
X

�ijvivj are positive elements. Let aij =
�
�ij � �ij

�
f (vi) f (vj).

Then,
X

aij = 0 =) aij = 0. Thus,
�
�ij � �ij

�
= 0, f (vi) = 0 or f (vj) = 0. The latter

two possibilities imply the contradiction that f is trivial. Hence �ij = �ij so that x = y. For

negative vectors, we use the same argument with g : V �! F such that g = �f .

Using these, we can de�ne known vector multiplication by focusing on the scalars of the

basis. That is,
�
x =

X
�ijvivj

�
:
�
y =

X
�ijvivj

�
=
X

�ij�ijvivj , which obeys all the familiar laws of a K-algebra.

De�nition 20 Let X be a vector space over F and Y be vector space over K and let � : F �! K

be a homomorphism. Then, an operator T : X �! Y is a �-vector space homomorphism

between X and Y if for all x;y 2 X and scalars � 2 F, T (�x+�y) = � (�)T (x)+� (�)T (y).

T is an isomorphism if T and � are bijective. A �-algebra homomorphism is of the form

T ((�x) (�y)) = T (��xy) = � (��)T (x)T (y), which we shall call an isomorphism if � and

T are bijective.

Combined, these give us the generalised superposition principle T (�x+�y) = � (�)T (x)+

� (�)T (y), which makes the application of linear operators a little uneasy. We, therefore,

do not call our operator linear but rather a homomorphism of vector spaces. This has the

added advantage of being able to meaningfully ascribe "superposition" where a con�guration

is changed from one system to another and not within. To reify our de�nition, we remark that

there are extensive examples of involutive anti-automorphisms over non-Archimedean (skew)

�elds [3].
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This de�nition is based for an operator which is single valued. We can de�ne a linear operator

for multi-valued mappings, as well, as follows: if T = f(x; z) : x 2 V; z 2Wg is a relation, then

(�x+ �y)Tz = � (�)xTz + � (�)yTz.

A straight-forward derivation of this de�nition is that T (0X) = 0Y and the preservation of

(multiplicative) linear dependence, provided that we are guaranteed the injectivity of T only

(and not necessarily of �).

Proof. T (0X) = T (x+ (�1x))

= T (x) + T (�1x) = T (x) + � (�1)T (x)

= T (x)� 1T (x) = T (x)� T (x) = 0Y .

Let
X

�nmxnym = 0 implies �nm = 0. Then, T
�X

�nmxnym

�
= T (0X) = 0Y

=)
X

�nmxnym = 0

=) �nm = 0 for all n;m

=) � (�nm) = 0 for all n;m

In a similar vein, one can prove that T (eX) = eY , provided T is surjective

Proof. eY 2 Y =) 9x such that T (x) = e

Now, e = T (x) = T (xe) = T (x)T (e) = eT (e) = T (e)

It is not necessary that a homomorphism between two algebras will preserve identities.

For instance, given any skew �eld K (which is an algebra over itself), the K-algebra of n � n

matrices M and T : K �! M , a �-algebra homomorphism where � is an automorphism with

T (x) = (�ij) such that �11 = x and zero otherwise. Then, T (xy) = T (x)T (y), T (x+ y) =

T (x) + T (y) and T (0) = 0 but T (e) 6= I. Many nice properties for rings in general (and K-

algebras in particular) fail if identities are not preserved. We, therefore, force this requirement

to be a part of our de�nition for the �-algebra homomorphism.
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Chapter 5

Algebra of Multivalued Operators

Sharp eigenvalues, by de�nition, are those in which there is no variance of the associated

observable1 whereas fuzzy values are otherwise. In order to be able to pin-down the value of

an observable but to move away from the eigenvalue approach, a generic way is to consider

multivalued mappings. In this section, we show that such a philosophy stands futile.

De�nition 21 Let X be a vector space over K. A f-sesquilinear 2-form is a function

' : X�X �! K such that 8� 2 K and 8x;y; z 2 X,

S1 ' (x+ y; z) = ' (x; z) + ' (y; z)

S2 ' (x;y + z) = ' (x;y) + ' (x; z)

S3 ' (�x;y) = f (�)' (x;y)

S4 ' (x; �y) = ' (x;y)�

where f : K �! K is an involutive anti-automorphism. Alternatively, we can call ' linear

in both arguments provided we de�ned ' : X�X �! K where X is a vector space on base

set X and conjugated scalars f (K). Through-out this section, f will stand for the involutive

anti-automorphism.

Lemma 22 ' (0;y) = ' (x;0) = 0

1See §8.1
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Proof. ' (0;y) = ' (x� x;y) = ' (x;y)� ' (x;y) = 0. Similarly the second part.

Thus, every vector is orthogonal to the zero vector.

Note that an anti-automorphism has to be de�ned over K in order for S3 to make sense. The

third argument also says that the function is conjugate linear in the �rst argument, following a

mathematician�s rather than a physicist�s convention. It turns out that many results relating

to orthogonal vectors can be deduced using the above generalised form: two elements v and w

of vector space space V are said to be '�orthogonal if ' (v;w) = 0. This is written as v?w.

We require that this be equivalent to w?v. Subsets A and B of V are orthogonal to each other

if every element A is orthogonal to every other element of B. This is written as A? = B and

B is said to be the orthogonal complement of A. B is then a subspace since for x;y 2B,

we can have �x��y 2B. The second orthogonal complement of A is de�ned as the orthogonal

complement of B. From Functional Analysis, we know that A?? is a closed subspace. It makes

sense to de�ne a closure operator A 7�! A?? in the sense of [36] which converts an ordinary set

into a subspace by respecting containment of the set (Lemma 23), monotonicity (Corollary

25) and idempotency (Corollary 27):

Lemma 23 A � A??.

Proof. x 2 A =) ' (x;y) = 0 for y 2 A? =) x 2 A??

Lemma 24 A � B, then B? � A?

Proof. If x 2 B?, then ' (x;y) = 0 for y 2 B

=) ' (x;y) = 0 for y 2 A

=) x 2 A?

Corollary 25 A � B =) A?? � B??

Proof. A � B =) B? � A? by Lemma 24 =) A?? � B??

Lemma 26 A??? = A

Proof. A? �
�
A?
�??

= A??? by Lemma 23 and A � A?? =)
�
A??

�?
= A??? � A?

by Lemma 24
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Corollary 27 A???? = A??

Proof. A?? �
�
A??

�??
= A???? by Lemma 23. x 2 A????, then ' (x;y) = 0 for

y 2 A??? = A

=) x 2 A?? by Lemma 23 again

Theorem 28 A?? is the smallest subset containing A

Proof. Assume there exists a closed B such that A � B � A??. Then, B = B?? and

A � B?? � A?? so that B? � A? and A??? = A? � B? and hence B?? = A??.

If S3 is replaced by ' (�x;y) = �' (x;y), then the 2-form is said to be bilinear. A

sesquilinear form ' such that ' (x;y) = �' (y;x) for all x;y is said to be antisymmetric. The

Lie Bracket is such an example. Every 2-form is said to be alternating if ' (x;x) = 0 8x 2 X.

In such a case, we write x?x and we say that x is isotropic. This is important in physical

theories. For example, in the Minkowski space R4 over R, ' (x;y) = x1y1 + x2y2 + x3y3 � x4y4
where x =(x1; x2; x3; x4) and y =(y1; y2; y3; y4) in which we can have non-zero isotropic vectors.

This gives rise to a semi-norm space. It is, therefore, no surprise that the underlying space for

relativistic mechanics is fundamentally di¤erent from Quantum Mechanics.

Every alternating 2-form is antisymmetric.

Proof. ' (x� y;x� y) = 0

=) ' (x;x� y)� ' (y;x� y) = 0

=) ' (x;x)� ' (y;y)� ' (y;x) + ' (y;y) = 0

=) �' (x;y)� ' (y;x) = 0

=) ' (x;y) = �' (y;x)

The converse holds if the characteristic of the underlying �eld is equal to 2.

Lemma 29 If charK =2, then ' (v;v) = 0 () ' (v;w) = �' (w;v) for all v;w

Proof. Neccesity has already been proven. To show su¢ ciency, let x 2X. Write x = v+w

Then, ' (v +w;v +w) = ' (v;v) + ' (w;v) + ' (v;w) + ' (w;w) = 0

Thus, no norm can be de�ned on a vector space from the sesquilinear form ' if charK =2.

A 2-form is said to be symmetric if ' (v;w) = ' (w;v) for all vectors v;w. A 2-fom is

non-degenerate if ' (u;v) = 0 for all v implies u = 0 and is degenerate if there exists u 6= 0
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such that ' (u;v) = 0 for all v. A 2-form is symplectic if it is bilinear, alternating and non-

degenerate. A form is positive if ' (x;x) � 0 for all x. A positive Hermitian form is said to

be separating or positive de�nite if x 6= 0 implies ' (x;x) > 0. The triple (X;K; ') is said

to be a Hermitian space if the sesquilinear 2-form ' is Hermitian i.e. ' (x;y) = f (' (y;x))

for all x;y2. The triple (X;K; ') is said to be a skew-Hermitian space if the sesquilinear

2-form ' is skew-Hermitian i.e. if �' (x;y) = f (' (y;x))

From ' (x;x) = f (' (x;x)), we see that ' (x;x) has to be a real number. In fact, more can

be said:

Lemma 30 A sesquilinear form ' is Hermitian if and only if ' (x;x) is real

Proof. ((= ) Applying f on both sides of

' (x;x)� ' (x;y)� ' (y;x) + ' (y;y) = ' (x� y;x� y)

We get ' (x;x)� f (' (x;y))� f (' (y;x)) + ' (y;y) = ' (x� y;x� y)

Subtract both to get

f (' (x;y)) + f (' (y;x)) = ' (x;y) + ' (y;x) (5.1)

Now, assume ' (x;y) 6= f (' (y;x))

Then, ' (y;x) 6= f (' (x;y))

So that when we add these two, we get f (' (x;y))+f (' (y;x)) 6= ' (x;y)+' (y;x), which

contradicts (5:1).

We now prove a generalised version of the Cauchy-Schwarz inequality

Proof. Let ' be a positive form and let x;y be non-zero vectors. Then, 0 � '(x��y;x�

�y)

= '(x;x� �y)� f (�)'(y;x� �y)

= '(x;x)� '(x;y)�� f (�) ['(y;x)� '(y;y)�]

Let � = ['(y;y)]�1 '(y;x)

Since f ('(y;x)) = '(x;y), f (��) = f (�) f (�) and f ('(x;x)) = '(x;x), then we have

'(x;x)�'(x;y) ['(y;y)]�1 '(y;x)�'(x;y) ['(y;y)]�1
h
'(y;x)� '(y;y) ['(y;y)]�1 '(y;x)

i
2Caution: Hermitian spaces for us do not have a seperating, positive 2-form
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'(x;x)� '(x;y)
�
'(y;y)�1

�
'(y;x) = '(x� �y;x� �y)

=) '(x;x) � '(x;y)'(y;x)
�
'(y;y)�1

�
(because '(y;y) is real)

=) '(x;x)'(y;y) � '(x;y)'(y;x)

With every sesquilinear, positive Hermitian form ', we can associate a semi-norm ' (x;x) :=

kxk2, provided that f is valuation preserving.

Proof. k�xk2 = ' (�x; �x)

= f (�)�' (x;x) since ' (x;x) is real

= j�j2 kxk2

Also, kx+ yk2 = ' (x+ y;x+ y)

= ' (x;x) + ' (x;y) + ' (y;x) + ' (y;y)

� j' (x;x)j+ j' (x;y)j+ j' (y;x)j+ j' (y;y)j

= kxk2 + 2 j' (x;y)j+ kyk2

� kxk2 + 2 kxk kyk+ kyk2

= (kxk+ kyk)2

Here, we have used the triangle inequality valid only for spaces over Archimedean �elds to

establish N3. For N3�

kx+ yk2 = ' (x+ y;x+ y)

= ' (x;x) + ' (x;y) + ' (y;x) + ' (y;y)

� max (j' (x;x)j ; j' (x;y)j ; j' (y;x)j ; j' (y;y)j)

Thus, kx+ yk �
p
max (j' (x;x)j ; j' (y;x)j ; j' (y;y)j)

Now, if ' (x;y) = a + b for a; b 2 K such that f (a) = a and f (b) 6= b, then jaj and jbj �

kxk kyk [3] so that j' (x;y)j = max fjaj ; jbjg � kxk kyk. It follows thatmax (j' (x;x)j ; j' (y;x)j ; j' (y;y)j) =

max fkxk ; kykg

This is a norm if ' is separating: let kxk = 0 for x 6= 0 but then ' (x;x) = 0 > 0. Now,

being positive de�nite (or negative de�nite) is an equivalent condition for the non-existence of

isotropic vectors relative to the 2-form. Without resorting to the axioms of norm spaces, we

can safely say that we still cannot have isotropic vectors if we require our 2-form to be positive

de�nite (or negative de�nite). Thus, if one needs isotropic vectors, one must not require the

2-form to be de�nite, a need we shall follow.
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A 2-form ' (x;y) is said to be bounded if there exists an m 2 R+ such that j' (x;y)j �

m kxk kyk for all x;y. We have seen that positive Hermitian forms are bounded, by the Cauchy-

Schwarz inequality. From this boundedness, we have continuity.

Proof. If j' (x;y)j � m kxk kyk, then letting xn �! x and yn �! y, we have j' (x;y)� ' (xn;yn)j

= j' (x;y)� ' (xn;yn) + ' (xn;y)� ' (xn;y)j

= j' (x� xn;y) + ' (xn;y � yn)j � j' (x� xn;y)j+ j' (xn;y � yn)j

�M (kx� xnk+ ky � ynk) �! 0

Thus, it is meaningful to talk about topologies even in Hermitian spaces. We are now in

a position to state that for any A � X, A? is closed, the proof of which can be found in any

routine Hilbert Space book.

In what follows, bold notation for vectors will be dropped.

Let (X;K; ') be a sesquilinear space. We require ' to be antisymmetric. Let T be a

relation on X. We say that T is closed (subspace) if T = T?? where ? is de�ned relative

to X � X. Through-out this section, only closed relations will be considered. This has the

following advantage: a closed relation T is linear

Proof. Let (x; u) ; (y; v) 2 T . Then, (x+ y; u+ v) 2 T because T is a subspace of X �X.

Thus, if T (x) = u and T (y) = v, we have T (x+ y) = u + v = T (x) + T (y). Next, we know

that (x; y) 2 T implies that � (x; y) = (�x; �y) 2 T . That is, T (�x) = �T (x).

In order to require T (�x) = f (�)T (x), we de�ne scalar multiplication as � (x; y) :=

(�x; f (�) y). It can be shown that this does not violate any of the axioms of scalar multiplication

for vectors and vector spaces constructed from old ones.

It follows that if T is closed, then ker (T ) is a closed subspace of X �X.

Equipped with these tools, we now modify the approach of [37].

Lemma 31 The sum and composition of two closed relations is closed.

Proof. We de�ne T + S = f(x; y) : y = s+ t for s 2 R (S) ; t 2 R (T )g and T � S = TS =

f(x; z) : (x; y) 2 S and (y; z) 2 T for some yg. To show closure, we note that (T + S) � (T + S)??

and TS � (TS)?? always holds and the reverse inclusion follows from the fact that T?? = T

and S?? = S.
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If T is not closed, then the closure T = T?? is the smallest extension of T , which exists

regardless of Zorn�s lemma. Furthermore, a single-valued adjoint of densely de�ned T will always

exist, be single-valued and linear, even if T is not single valued.

Proof. Part A

We �rst de�ne the adjoint of a relation on a Hermitian space using a function U on X �X.

De�ne U : X � X �! X � X by U (x; y) = (�y; x). This is well de�ned and injective since

(x1; y1) = (x2; y2) () x1 = x2 and y1 = y2 () x1 = x2 and �y1 = �y2 () (�y1; x1) =

(�y2; x2). Also, since X is a vector space, every element has an additive inverse. Therefore,

U is surjective. Finally, U is de�ned everywhere so that U�1 (x; y) = (y;�x) exists. For

z; w 2 X � X with z = (z1; z2) and w = (w1; w2), we de�ne � (z; w) := ('� ') (z; w)X�X =

' (z1; w1) + ' (z2; w2). In this case, we note that

� (U (z) ; w) = �
�
z; U�1 (w)

�
To show this, � (U (z) ; w) = ('� ') ((�z2; z1) ; (w1; w2)) = �' (z2; w1) + ' (z1; w2) on the

LHS whereas on the RHS we have ('� ') ((z1; z2) ; (w2;�w1)) = ' (z1; w2)� ' (z2; w1)

Furthermore, for M � X � X, we have U
�
M?� = U (M)?: let x 2 U

�
M?�. Then,

x = (x1; x2) = U (y1; y2) for y = (y1; y2) 2M? () � (y; z) = 0 for z 2M

() �
�
U�1 (x) ; z

�
= 0

() � (x;U (z)) = 0

() x 2 U (M)?

Now, for any relation T on X, de�ne a relation T � on X by T � = U (T )? = U
�
T?
�
.

Note that T � is automatically closed and hence linear. With this, for � = (x; z) 2 T and

� = (y; w) 2 T � = U (T )? =) � (�; ) = 0 for  2 U (T ). Note that  = U (�) = (�z; x).

Hence �' (y; z) + ' (w; x) = 0 so that ' (y; z) = ' (w; x) =) ' (z; y) = ' (x;w). Identifying

z = Tx and w = T �y, we have ' (Tx; y) = ' (x; T �w). The converse holds as well.

Part B

Now we prove certain relations for the above construction

1. kerT � = R (T )?

Let x 2 kerT �. Then, (x; 0) 2 T �. By the end of Part A, we have ' (b; x) = ' (a; 0) = 0

for (a; b) 2 T . Hence b 2 R (T ) and x 2 R (T )?. The converse follows similarly.
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2. (�T )� = f (�)T �

Let � = (x; y) 2 U (�T )?. Then, � (�; �) = 0 for � 2 U (�T ) where � = (��v; u) for

(u; �v) 2 �T . Hence ' (�v; x) = f (�)' (v; x) = ' (u; y) so that (u; f (�) v) 2 f (�)T

implying (x; y) 2 f (�)T �. The converse follows similarly.

3.
�
T�1

��
= (T �)�1

For � = (x; z) 2 T�1 =) (z; x) 2 T � = (y; w) 2
�
T�1

��
= U

�
T�1

�?
=) � (�; ) = 0

for (�x; z) =  2 U
�
T�1

�
. Hence ' (z; w) = ' (x; y) so that (w; y) 2 T � and hence

(y; w) 2 (T �)�1. The converse follows similarly.

4. T � =
�
�T�1

�?, T = T ��, (RT )� = T �R�, D (T ) = R (T �)

Established similarly by de�nitions.

We cannot have I� = I because I is not closed in a general Hermitian space. If it were,

then by Bullet 1, ker I� = X? = f0g, implying that X has no isotropic vectors, which we have

not established. However, I is closed on a collection of anisotropic vectors since such vectors

give rise to a Hausdro¤ space3

Part C

By densely de�ned T , we mean D (T )?? = X. This condition is, in fact, equivalent to

T � being single valued. Of course this does not mean that X is separable since D (T ) is not

necessarily a subspace nor necessarily countable.

Assume that �1 = (p; q) and �2 = (p; r) 2 T � =
�
�T�1

�?. If p 2 kerT �, then q = r and

there is nothing to prove. If p 62 kerT �. Then, p 62 R (T )? and ' (z; p) 6= 0 for z 2 R (T ). For

(x; z) 2 T (that is, x 2 E?), we have ' (z; p) = ' (x; q) = ' (x; r). Using, x 2 X? and q; r 2 X,

we get the contradiction that ' (z; p) = 0

Conversely, assume that T � is single-valued. Recall that a relation R is single valued if and

only if RR�1 = IR(R) = f(x; x) : x 2 R (R)g. Thus, we have that T �T ��1 = IR(T �). Now,

assume that there exists x 2 XnD (T )??. Then, x 62 D (T ) = R (T �) so that T �T ��1 6= IR(T �).

3T = f(x; y) : x 2 X; y 2 Y g is closed i¤ T is continuous provided that Y is Hausdro¤
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This takes care of the important question of having a canonical star operation on a collection

of multivalued operators. This, the additive identity O = f(x; 0)g, multiplicative identity

I = f(x; x)g and the identi�cation �T = f(x; �y) : (x; y) 2 Tg for � 2 K still do not tell us that

the collection of such relations forms an algebra since we are short of the distributive law

Lemma 32 Let R;S; T be closed relations. Then, RS +RT � R (S + T ) where reverse inclu-

sion holds if D (R) = X and (S + T )R � SR+ TR where reverse inclusion holds if R is single

valued.

Proof. Let (x; y) 2 RS+RT where y = s+t for s 2 R (RS) ; t 2 R (RT ) or that (x; s) 2 RS

and

(x; t) 2 RT =) 9y1; y2 such that (x; y1) 2 S, (y1; s) 2 R and (x; y2) 2 T , (y2; t) 2 R so

that (x; y1 + y2) 2 S + T . Note that (y1 + y2; s+ t) 2 R because R is a subspace of X �X so

that (x; y) 2 R (S + T ). Conversely, let (x; y) 2 R (S + T ). Then, 9z such that (x; z) 2 S + T

and (z; y) 2 R. Let z = s + t for s 2 R (S) ; t 2 R (T ). Thus, (x; s) 2 S and (x; t) 2 T . Now,

since D (R) = X, then s; t 2 D (R) and hence (s; y) ; (t; y) 2 R. Hence we have (x; y) 2 RS and

RT so that (x; y) 2 RS +RT because RS and RT are closed.

(x; s1) 2 RS and (x; t1) 2 RT so that (x; y) 2 RS +RT

For the second inclusion, let (x; y) 2 (S + T )R. Then 9z such that (x; z) 2 R and (z; y) 2

S + T . Let y = s+ t. Then, (z; s) 2 S and (z; t) 2 T . Hence (x; s) 2 SR and (x; t) 2 ST which

implies (x; y) 2 SR+TR. Conversely, let (x; y) 2 SR+TR. Then, y = a+b for a 2 R (SR) and

b 2 R (TR) so that (x; a) 2 SR and (x; b) 2 TR. Thus, there exists y1; y2 such that (x; y1) 2 R,

(y1; a) 2 S, (x; y2) 2 R and (y2; b) 2 T . The single valuedness of R implies y2 = y1 = z

(say) so that we are left with (x; z) 2 R, (z; a) 2 S and (z; b) 2 T . Thus, (z; y) 2 S + T and

(x; y) 2 (S + T )R

Worse, even if SR = RS and TR = RT , we are still not guaranteed (S + T )R = R (S + T ).

For example, take S = I, T = �I and D (R) 6= X. There is a slight way around these: if S and

T are such that kerT = kerS and R (S) = R (T ), then S � T implies S = T . However, for our

purposes, this is quite useless since it is rare for two observables to have the same kernel and

range, even if some of them are compatible with others.
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In order to form a �-algebra, one is forced to consider only single-valued operators de�ned

with domains in X (not dense). In order to have a restricted algebra, we can either take densely

de�ned operators or single-valued operators and not both. In either case, spectral theory one

has to take up is one which combines both linear and non-linear operators. No such formluation

is currently known to the author.

In general, a way to impose a star operation on an algebra is as follows: one considers what

is called the conjugate linear involution � : X �! X such that 8a;b 2 X and � 2 K, we

have

1. �(a+ b) = � (a) + � (b)

2. � (�a) = f (�) � (a)

3. � (� (a)) = a

4. � (ab) = � (b) � (a).

where f : K �! K is an involutive, valuation preserving anti-automorphism. In such a

case, � (a) is called the adjoint of a. Needless to state, if � (a) = a, then a is self-adjoint. A

K-algebra X equipped with such a conjugate linear involution is called a �-algebra. For brevity,

we shall write � (a) = a�. If jf (�)j = j�j 4, we can use the de�nition of operator seminorm for

�. Now, from our de�nition, it follows that k� (a�a)k = ka�ak. The admission of �xed points

and the de�nition kTk = inf fk : kTxk � k kxk ;8xg for a linear operator implies k�k � 1.

Conversely, kak = 1 implies ka�k = k� (a)k � k�k = sup
kak=1

ka�k. Taking supremum on both

sides over a, we end up k�k � 1. Thus, k�k = 1. It follows that kak = ka�k. Thus, for any

Banach Algebra with an isometric involution, we have ka�ak � kak2. The converse does not

necessarily follow [43]. If it does, then the norm is called a �-norm. If, with this norm, X is

complete, then X will be called a K�-algebra.

If X is a vector space, we can always de�ne a � operation (without condition 4, obviously)

as follows: for any x 2 V , de�ne � (x) = �
�X

�ivi

�
:=
X

f (�i)vi where f is any involutive,

anti-automorphism. If, however, X is an algebra, we may try to de�ne � (x) = �
�X

�ijvivj

�
=

4Some anti-involutive automorphisms do not preserve order and hence are not isometric. See §8.3
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X
f (�ij)vivj . Provided that we are willing to accept the Axiom of Choice, this de�nition

will even cater for matrix algebra of square matrices with � given by the conjugate transpose

but then we shall be losing the preservation of valuation i.e. k�k = 1 may not hold. Thus, a

similar treatment for K-algebras seems impossible at the moment, unless one speci�es how the

basis ought to be permuted, as well. Our choice of the word "permuted" stems from the idea

that an automorphism happens to be a permutation of the algebraic structure.

Sadly, there are no multiplicative functionals on B� (X)

Proof. Not all multiplicative linear functionals preserve identities �only onto ones do, as

was proved. For any � 2 K, we have �I2B� (X). Thus, for any multiplicative linear functional

g, it must be onto and that g (I) = e. Let us consider orthogonal projection operators P and

Q 2 B� (X) such that dimP (X) = dimQ (X). Let T : P (X) �! Q (X) be a partial isometry.

If P 6= T �T , Q 6= TT �, then we arrive at the contradiction that P (x) 62 P (X) and Q (x) 62

Q (X). Thus, P = T �T , Q = TT �. Then, as PQ = 0, we have g(P )g(Q) = 0, so at least one of

them is zero. By construction, we get g(P ) = g (T �T ) = g (T ) g (T �) = g (Q) so both are zero.

By construction, we must also have P +Q = I. Then e = g (I) = g(P +Q) = g(P )+ g(Q) = 0,

a contradiction.

We can try to collect all operators (linear or not) and turn them into an algebra. Unfor-

tunately, one part of the distributive law (R (S + T ) = RS +RT ) does not necessarily hold,

as we have already seen. There are ways around this by, say, de�ning a slash-product instead

of the usual composition [41]. Not all operators can be de�ned with a complete domain but

this isn�t a problem since one is usually interested in the unit ball only. The added problem of

considering a canonical algebra is to have a compatible seminorm that turns the algebra into a

seminormed algebra with a compatible topology. The norm

kTk = lim sup
kxk!1

kTxk
kxk

yields kRTk � kRk kTk[47].

We keep things simple for now: consider bounded single-valued operators T : X �! Y

where Y is a Banach space over F and X is a normed space over K with � : K �! F being

a valuation preserving homomorphism. We turn this into a vector space by de�ning vector
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addition as point-wise addition of the linear operators. Scalar multiplication is also de�ned as

point-wise scaling.

Recall the de�nition of supremum. It is an upper bound and the lowest of the upper

bounds of a set. Thus, we can collect vectors x such that kTxkkxk � c with kxk 6= 0 and de�ne a

supremum out of it. If we can �nd a smallest such c, then we have the seminorm of a bounded

linear operator T , denoted by kTk, de�ned as kTk = sup
kxk6=0

kTxk
kxk .

Since kTk = sup
kxk6=0

kTxk
kxk , we can safely say that kTk �

kTxk
kxk for all x 2X so that we have for

ourselves the inequality

kTxk � kTk kxk

The following de�nitions are equivalent:

kTk : = sup
kxk6=0

kTxk
kxk = sup

kxk=1
kTxk = sup

0<kxk�1
kTxk

= sup
0<kxk<1

kTxk = inf fk : kTxk � k kxk ;8xg

Let A =
n
kT (x)k
kxk : x 2 X and kxk 6= 0

o
B = fkT (x)k : x 2 X and kxk = 1g

C = fkT (x)k : x 2 X and kxk � 1g

D = fkT (x)k : x 2 X and kxk < 1g

Since equal sets have the same supremum, we will show that A = B = C = D

Clearly, A contains B, C and D.

Let a 2 A

() a = kT (x)k
kxk for some x 2 X such that kxk 6= 0

Since X is a seminorm space and closed under scalar multiplication, we can let y kxk = x

() kyk = 1 so that a = kT (y)k for some y 2 X

() a 2 B

() A = B

It is clear that D � C and that B [D = C so that B � C as well.

Further, B = A � C so that we have B = A = C

To show that B � D

44



a 2 B

=) a = kT (x)k for some x 2 X such that kxk = 1

Assume that 9xn such that xn �! x.

Let yn = n�1
n xn. Then, yn �! y. Furthermore, kynk < kxnk for all n so that kxk = 1

implies kyk < 1

Then, an = kTynk =
��n�1
n

�� kTxnk �! kTyk = a

Finally, we show that kTk = inf fk : kTxk � k kxk ;8xg

Assume that sup
kxk6=0

kTxk
kxk = �

Then, kTxk � � kxk

=) sup
kxk6=0

kTxk
kxk = � � inf fk : kTxk � k kxk ;8xg

Next, inf fk : kTxk � k kxk ;8xg � kTxk
kxk � ��

1
n for all n

So that inf fk : kTxk � k kxk ;8xg = � = sup
kxk6=0

kTxk
kxk

This is a seminorm:

For N1, kTk � kTxk
kxk � 0. kTk = 0 if and only if

sup
kTxk
kxk = 0

which implies sup kTxk = 0: Since we have a supremum of non-negative numbers and this is

equal to zero, therefore kTk = 0 if and only if kTxk = 0 for all x. Considering that Tx is a

vector whose seminorm is equal to zero, we cannot guarantee that Tx is equal to zero unless

we�re considering a norm space N instead of a seminorm space.

For N2, k�Tk = sup
kxk6=0

k�Txk
kxk = sup

kxk6=0

j�jkTxk
kxk = j�j sup

kxk6=0

kTxk
kxk = j�j kTk. In the second step,

the homogenity property is applied because of the norm of R(T ). In the third step, the scalar

can be factored out because it has no role in the supremum since it does not depend on x.

For N3, sup k(T1 + T2)xk = sup kT1x+ T2xk. Since

kT1x+ T2xk � kT1xk+ kT2xk

and

kT1x+ T2xk � max fkT1xk ; kT2xkg
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and so also their supremum, thus sup kT1x+ T2xk � sup kT1xk+sup kT2xk and sup kT1x+ T2xk �

supmax fkT1xk ; kT2xkg

= max fsup kT1xk ; sup kT2xkg

This space is complete, regardless of the completion of X, provided that Y is complete.

Vector multiplication is de�ned as the composition of operators, which do not necessarily com-

mute. The distributive law holds only if the domain of such single-valued operators is X. These

de�nitions obey our axioms, making this space a bona �de Weak Banach Algebra.

There is a technical detail that needs to be dealt with in order to satisfy the homogeneity

requirement i.e. k�Tk = j� (�)j kTk: we must have a valuation preserving homomorphism �

between the skew �eld. This is because even if � is an automorphism, assuming the AC, we

can get many "wild" automorphisms which do not preserve order so that the basic assumption

of being able to scale appropriately is destroyed5. If the �eld is non-Archimedean, then the

situation may change [42].

It now makes sense to introduce a notation �for operators on a spaceX, we haveB� (X;X) =

B� (X). In the spirit of Banach-Mazur theorem, we have the following characterisation:

Proposition 33 Let (X; k:k) be a unital Weak Banach algebra. Then X is a closed subalgebra

of B� (X)[43]

Proof. We have already showed that B� (X) is an algebra. We show thatX is homomorphic

to B�(X): let Lx (y) = xy. Then, Lx (y1 + y2) = x (y1 + y2) = xy1+xy2 = Lx (y1)+Lx (y2)

and Lx (�y) = x (�y) = �xy = �Lx (y) so that this operator is linear. Hence B�(X) 6= ?

Next, let L : X �! B� (X) be de�ned as L (x) = Lx

Then, L (x+ y) = Lx+y. Now, Lx+y (z) = (x+ y) z = xz+ xz = Lx (z) + Ly (z) =

(Lx + Ly) (z) for any z so that Lx+y = Lx + Ly

and hence L (x+ y) = L (x) + L (y)

Next, L (�y) = L�y

Thus, L�y (z) = (�y) (z) = � (yz) = �Ly (z) for any z so that L�y = �Ly and, therefore,

L (�y) = �L (y).

Hence L is a homomorphism and thus L (X) is a subspace of B� (X).

5See §8.3
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We de�ne a seminorm k:ko on X to be the restriction of the operator norm of B�(X) to

L (X), that is kxko := kLxk = sup
kyk�1

kxyk

Since Lx is linear operator without deception or fraud, k:ko obeys the axioms of a seminorm.

We now show that k:k and k:ko are equivalent.

For kyk � 1, we have kxyk � kxk kyk � kxk. This shows that kxko � kxk. On the other

hand, we have

kxk = kxek � sup
kyk6=0

kxyk = kxko

This shows that kxk � kxko for all x 2 X and shows that the seminorms are equivalent. In

addition, this guarantees us the completeness of the new seminorm and X retains its Banach

algebra character but with the help of operators. Since the norm is similar, we must have

(X; k:ko) ' L (X) is a subspace of B� (X)

Since X is a complete subspace of a complete space B� (X), X is closed.

This piece of machinery allows us to con�dently suggest that keko = 1 by de�nition so that

we do not have to worry about having a unit with a seminorm not equal to 1. Furthermore,

it also justi�es studying K-algebras from the point of view of operators. However, it is worth

remembering that this is not a complete characterisation since many properties do not "carry

over". For instance, any projection operator is linear and bounded (thus are members of B� (X))

and for orthogonal subspaces6 M;N , two projection operators P1; P2 such that P1 (X) = M

and P2 (X) = N together imply that P1P2 = 0. Thus, B� (X) is not a division algebra because

it has zero divisors, even if X is.

What about ordinary linear functionals? They have an interesting story to tell.

5.1 Riesz Representation Theorem on Hermitian Spaces

Theorem 34 Let X be de�ned as in the previous chapter. Then there exists an injective linear

functional g between X and X�, the algebraic dual of X such that R(g) = X 0, the collection of

all continuous functionals on X. Moreover, if I is a collection of anisotropic vectors, then the

6The condition of orthogonality is important: for n 2 N and m 2M , there exists x;y 2 X such that P1 (x) =
n and P2 (x) = m so that ' (P2P1 (x) ;y) = ' (P1 (x) ; P2 (y)) = ' (n;m) = 0. Similarly, ' (x; P1P2 (y)) = 0.
Hence P1P2 = 0.
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kernel of each element of g (I) is splitting.

Before we embark on the proof, we remark that for us, a linear functional will be continuous

if it has a closed kernel. That is, ker g = ker g??. Furthermore, we call a subspace F splitting7

if X = F � F?

Proof. Let y 2 X be arbitrary. De�ne gy : X �! X� such that gy (x) = ' (y; x). This

is well de�ned and injective since for x1 = x2 () x1 � x2 = 0 () ' (y; 0) = 0 =

' (y; x1 � x2) = ' (y; x1) � ' (y; x2). By de�nition, ker gy consists of vectors (and their span)

orthogonal to y. Thus, ker gy = fky : k 2 Kg?, which is closed subspace of X. This implies that

R (g) � X 0
. To show the converse, let h 2 X 0. If h = 0, then g0 = h so that h 2 R (g). If h 6= 0,

then dimh = 1 so that kerh has codimension 1 which assures us of the existence of di¤erent

vectors kv such that X = kerh � fkv : k 2 Kg. Choose 0 6= z 2 kerh? and z 62 fkv : k 2 Kg?

such that ' (z; v) 6= 0. Letting w = f�1
�
' (v; z)�1 h (v)

�
z gives us h (v) = ' (v; w). Now let

x 2 X. Then, there exists x1 2 kerh and � 2 K such that x = x1 + �v. Applying h on both

sides gives us h (x) = �h (v) and ' (x;w) = �' (v; w) so that h = gw and hence h 2 R (g).

If y is anisotropic, then y 62 fky : k 2 Kg? hence there exists gy such that ker gy = fky : k 2 Kg?

is closed and X = fky : k 2 Kg � fky : k 2 Kg? so that ker gy is splitting.

Initially, this theorem was only included to show that the completeness requirement for

Quantum Mechanics can be weakened. It turns out, however, that this is of no use:

Corollary 35 ' admits nonzero isotropic vectors, then there are closed subspaces of X that

are not splitting.

Proof. If 0 6= y 2 X such that ' (y; y) = 0, then fky : k 2 Kg � fky : k 2 Kg? � X

In other words, if there are no closed subspaces of X that are not splitting (i.e. X is

orthomodular), then ' does not admit isotropic vectors. More can be said: if every closed

subspace of X is splitting (i.e. X is orthomodular) with an orthogonal sequence, then X is a

Hilbert Space (see next chapter) with the underlying �eld being either R, C or H. It might

come as a surprise that two innocent assumptions can fully describe the space. Furthermore,

as is evident in the proof of Solèr�s theorem, the existence of an orthogonal sequence is rather

made heavy use of, instead of the orthomodularity assumption.

7Not to be confused with a split space in theory of Quadratic Forms, a completely opposite concept
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Thus, in essence, the fundamental di¤erence between Relativity and Quantum Mechanics

turns out to stem from the existence of isotropic vectors.

If X is orthomodular, then for any subset F of X, it can be proved that hF i = F??

Proof. Since F � F??, it follows that F?? 2 [F ] and hence hF i � F??. The converse

follows from the fact that ' is continuous and so are vector addition (and multiplication) and

scalar multiplication in a Hermitian space.

This satis�es De�nition 68 of [11]. In particular, the de�nition follows by De�nition 1 of [11]

by assuming that ' (x; y) = 0 implies x 6= y or, equivalently, ' (x; x) 6= 0 for any x. There is no

mention of zero vectors since for the cited source, X is just an ordinary set, not a Hermitian

space and, instead, x ? y is taken as a binary relation on X.

A collection of all sets of the form F
??
forms an atomic ortholattice. That is, for all subsets

F and x 2 XnF??, (F [ fxg)?? covers F??. Hence by Piron�s theorem, such a lattice is

isomorphic to the lattice of closed subspaces of a Hilbert space over an arbitrary Archimedean

skew �eld.

Thus, orthomodular Hermitian Spaces will admit only Archimedean skew �elds. In partic-

ular, the in�nitesimals have no room. This is explicitly shown in the proof of Solèr�s theorem,

to which we now turn.

8For lack of time and considering the length of this report, we shall not enter into a detailed discussion of the
cited paper.
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Chapter 6

Underlying �eld

We have seen that the choice of the underlying �eld in�uences the structure of the vector space

itself in general. Hence, the choice of the underlying �eld is not trivial. So, which �eld should

one choose?

One answer to this question is rather non-conventional and involves formalising our way of

making sense of Quantum Mechanics at the level of logic. In order to have a reasonably well-

developed form of logic, one must have a model of syntax and semantics. Lattice Theory plays

the part for the provision of syntax (language) and the truth values o¤er an interpretation

(semantics) via a valuation. We will not be concerned with the latter. The former algebra

happens to be converted to propositions via a mapping. Thus, x0 becomes :x whereas x&y is

converted to x ^ y. This requires us to develop a rule for formulating strings, which is taken

care of in Lattice Theory.

The idea now is straight-forward: our classical world, the dynamics of which are modelled by

a Poisson Manifold, is understandable from the point of view of classical logic �that is, Boolean

Lattice, which is an orthocomplemented, distributive lattice. By orthocomplementation, we

mean the following: let L be a lattice. For each x 2L, let Mx � M be the set of complements

of x. L is said to be orthocomplemented if there is a function f :L�! M , called an

orthocomplementation, such that

1. f (x) 2Mx

2. f (f (x)) = x
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3. x � y =) f (y) � f (x) for all x; y 2L

The two element f0; 1g Boolean algebra can model electrical circuits. Another type of

Boolean algebra is that on the set of positive divisors of n for any natural number n with

a ^ b := gcd (a; b) and a _ b := lcm (a; b). This gives rise to partial order with a � b () a j b.

The complement of a is given by n
a . Another Boolean Algebra known as the �eld of sets is

an algebra (P (X) ;[;\) where X is any non-empty set. In fact, by Stone�s representation

theorem1, every Boolean Algebra is isomorphic to a �eld of sets [19]. Boolean lattice model

classical logic because such lattices capture the notions of classical logic.

6.1 Orthomodularity

For Boolean lattices, distributivity guarantees the uniqueness of complements. Distributivity

has a physical correspondence in the classical case. However, from the point of the view of

Quantum Mechanics, the distributive law fails. Consider the Hilbert space R and a particle

moving on on the real line and then have the following propositions:

a = "The particle has momentum in the interval [-1/12, 1/12]"

b = "the particle is in the interval [-1, 1]"

c ="the particle is in the interval [1, 3]"

These intervals will correspond to some converted units with Planck�s constant equal to

unity. Thus, �p�x � 1
2 must always hold. In the case of a, �p =

1
6 . In the case of b and

c, �x = 2: It can be the case that the particle�s momentum is between 0 and +1/6, and its

position is between -1 and +3 because this does not violate the uncertainty relation. Thus, a

and (b or c) is true. On the other hand, the propositions "a and b" and "a and c" are both false

since they do not satisfy the uncertainty principle. So, (a and b) or (a and c) is false. Thus

the distributive law fails. In summary, the most notable di¤erence that clearly distinguishes

Quantum Logic from classical logic is the failure of the distributive law. We are then forced to

consider weaker laws.

De�nition 36 A lattice L ismodular if x � z implies x_(y ^ z) = (x _ y)^z for all x; y; z 2L

1Every Boolean algebra is isomorphic to (P (X) ;[\;c )
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Lemma 37 Every distributive lattice is modular but the converse is not true

Proof. Let x � z. Then, x _ (y ^ z) = (x _ y) ^ (x _ z) = (x _ y) ^ z

Example 38 The diamond lattice M5 is an example for a modular lattice which is not distrib-

utive where M5 is the lattice

a _ (b ^ c) = a _ e = a but (a _ b) ^ (a _ c) = I ^ I = I. Therefore, M5 is not distributive.

De�nition 39 A lattice L is orthomodular if x � z implies x_(x0 ^ z) = z for all x; z 2L[45]

Lemma 40 Every modular lattice is orthomodular

Proof. Let x � z. Then, x _ (y ^ z) = (x _ y) ^ z for all x; y; z 2L: Take y = x0. Then,

(x _ y) ^ z = (x _ x0) ^ z = 1 ^ z = z

The collection of closed subspaces of (countable dimensional) Hilbert Space H over �eld K

form an orthomodular lattice that is not modular.

Now, which lattice should be a natural candidate for Quantum Logic? Orthomodular lattices

or modular ones?

Based on the idea that every eigenvector is an eigenstate, the corresponding subspace gen-

erated by each eigenstate therefore corresponds to experimental propositions. In particular, we

consider the lattice of closed subspaces of a Hilbert Space. Since the intersection of two sub-

spaces is a subspace, a natural candidate for the meet operation is the set-theoretic intersection.

However, the union of two subspaces is not necessarily a subspace. Hence we discard the set-

theoretic union as a natural candidate for our join operation and instead, call the closed-span
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of the union of two subspaces as our join operation. This collection of subspaces is bounded

below by the trivial subspace f0g and the bounded above the trivial subspace H. Our comple-

ment operation has to ensure that the complement of any closed subspace ought to be a closed

subspace. This is the case if we de�ne the complement of M as M?. The closed subspaces of

(countable dimensional) Hilbert Space H over �eld K form an orthomodular lattice that is not

modular. To relate this lattice theoretic de�nition with that of the Hilbert space, we have the

following theorem:

Theorem 41 The following are equivalent:

1. H is orthomodular: that is, if for all subspaces X � H : X = X?? ) H = X �X?:

2. Lattice of closed subspaces C (H) is orthomodular

Proof. (2 =) 1)Notice that A _ B = span (A [B) = A � B where A;B are closed

subspaces of H. The direct sum of two closed subspaces is closed. Now, for 8A;B 2 C (H),

A � B =) A_
�
A? ^B

�
= B. In particular, for B =H, we have A�

�
A? \H

�
= A�A? =H.

(1 =) 2)Let A;B 2 C (H) such that A � B ( =) B? � A?). We have to show that

A �
�
A? \B

�
= B: Let 0 6= z 2 A �

�
A? \B

�
. Then, there exists x 2 A and y 2

�
A? \B

�
such that x + y = z. In particular, y 2 B. Since A � B, then x 2 B =) x + y 2 B.

Hence A �
�
A? \B

�
� B. To show that B is a subset of A �

�
A? \B

�
, let z 2 B =H\B =�

A�A?
�
\ B, then z = x + y where z 2 B, x 2 A and y 2 A?. From A � B, it follows that

x 2 B and that y = z � x 2 B. That is, y 2 A? \B. Therefore, z = x+ y 2 A�
�
A? \B

�
.

In the countably in�nite case, every such (separable) Hilbert space is isomorphic to l2 (C)

which is again orthomodular. Separability is important for otherwise, with uncountable basis,

we end up with all sorts of trouble, including summing elements of the interval [0; 1].

For modularity, �nite dimensional spaces are exempted: lattice of all orthogonally closed

subspaces of H is modular i¤ H if �nite dimensional [8]. What if weaken the structure? That

is, what about the lattice of subspaces of a Hermitian space? In 1980, Hans Keller proved

that the lattice of all orthogonally closed subspaces of a Hermitian space (E;';K) is modular

if and only if E is �nite dimensional, where ' is non-degenerate, Hermitian form [23]. Even if

�nite dimensional spaces are more well-behaved than in�nite dimensional ones yet the historical
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signi�cance of in�nite dimensional spaces in general and L2 in particular cannot be discarded.

Therefore, one must drop modularity, as the following counter-example attests to:

Example 42 Consider H =L2 [0; 1] and form the lattice of closed subspaces C (H). Recall that

C [0; 1] ; L1 [0; 1] ; L1 [0; 1] � L2 [0; 1] are subspaces which are not closed. If the closed subsets

are not orthogonal to each other, then it is possible to �nd subspaces such that cl
�
L1 [0; 1]

�
� cl (C [0; 1]) but (cl (C [0; 1]) _ cl (L1 [0; 1])) \ cl

�
L1 [0; 1]

�
� cl (C [0; 1]) _ (cl (L1 [0; 1]) \

cl
�
L1 [0; 1]

�
).

C (H) is not distributive.

Example 43 Let H= R2. Consider subspaces X = (x; 0), Y = (0; y) and Z = (mx; y) where

y = mx. Then, (X � Y ) \ Z = Z but (X \ Z)� (Y \ Z) = f0g.

This approach focuses on states. However, there is an equivalent approach to measurement

of such states: there is a one-to-one correspondence between a projection operator and a closed

subspace of H:

Proof. If P is a projection operator, then the space Hp = P (H) is closed. We show

that kerP? = P (H) where kerP = fy : y 2 Hand P (y) = 0g. If x 2 P (H), then P (x) = x

so that P (x) 6= 0 and x 62 kerP =) x 2 kerP?. Thus, P (H) � kerP?. It follows that

kerP � P (H)?.

To show the converse, let x 2 kerP?. Then, for all y 2 kerP , hx; yi = 0 and y 2 P (H)? so

that x 2 P (H) and hence kerP? � P (H).

Vice versa, since every vector z 2H can be uniquely decomposed as z = x+ y where x 2 V

and y 2 V?. The linear map de�ned via PV (z) = x is then a projection.

We shall write PV = P for simplicity. Let z 2H. Then, P 2 (z) = P (x) = x since x = x+ 0

and every subspace is orthogonal to the trivial subspace f0g. Also, P (z) = x by de�nition.

That is P (z) = P 2 (z) for all z. Hence P = P 2. Second, let z1; z2 2H with z1 = x1 + y1 and

z2 = x2 + y2 with x1; x2 2 V and y1; y2 2 V?. Then, hP (z1) ; z2i = hx1; z2i = hx1; x2 + y2i =

hx1; x2i+ hx1; y2i whereas hz1; P (z2)i = hz1; x2i = hx1 + y1; x2i = hx1; x2i+ hy1; x2i. It remains

to show that hx1; y2i = hy1; x2i. This holds because hx1; y2i = hy1; x2i = 0.

Around the introduction of Quantum Logic in 1936 [8] by von Neumann and Birkho¤,

an abstract de�nition of orthomodular lattices had not been formulated but various instances
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were known, including the canonical Hilbert lattice C(H). This natural existence implied the

selection of orthomodular lattices to model the logic of quantum mechanics yet this was not the

choice of the founding fathers of Quantum Logic for technical reasons. Instead, von Neumann

wished to preserve modularity. Von Neumann�s letter of January 19,1935 writes:

Using the operator-description, a_b; a^b can be formed, if the physically signi�cant

operators form a ring [of operators]. This, I think should be assumed anyhow, even

if one does not require that all operators are physically signi�cant. But we need

probably not insist on this point too much [40].

By November 1935, P(H) was then given consideration again:

I am somewhat scared to consider all physical quantities = bounded self-adjoint

operators as a lattice [40].

This was because for unbounded, densely de�ned operators, we are not guaranteed a non-

empty intersection of domains and, therefore, von Neumann discards P (H) as a natural can-

didate. Von Neumann emphasizes:

Examples could be constructed which make no use of operator theory, but I think

that this example shows more clearly �what it�s all about�: it is the existence of

�pathological� operators � like X,Y above � in Hilbert space, which destroys the

[modular] lattice characters [40]

This pathology, for von Neumann is a serious problem because it prohibits adding and

composing these operators in general so that the essential requirement of closure for an algebra

is not satis�ed, which appeared to him rather un-physical [30]. This character against the hope

to achieve an algebra of observables was one of the main reasons why, in his famous talk on

�Unsolved Problems in Mathematics�in 1954 suggested that a restricted set of operators would

be a more suitable mathematical framework for quantum mechanics than Hilbert space theory

[34].

In this situation von Neumann saw two options:
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(I) Either we de�ne the �join�by [ (as a simple linear sum)... but we must admit

all (not-necessarily-closed) linear subspaces,

(II) or we de�ne the �join�by _ (closure of the linear sum), then [modularity] is

lost [40].

A collection of closed subspaces is rather natural since all probabilities in the state K are

equal to those in the state K?? yet K \ L 6= K?? \ L?? does not hold in general. Given this

and the inclination of von Neumann, one would expect that (I) would have been chosen: on

the contrary, the orthogonal complement K still has the property K? + L? = (K \ L)? but

K? \L? = (K � L)? and K?? = K are not necessarily true; for instance, in L2 spaces. This

is because, assuming anisotripicity, we have K \K? = f0g, while K �K? is everywhere dense

but not necessarily equal to H for Hilbert Spaces over general �elds K.

We are, therefore, left with the canonical orthomodular lattice of closed subspaces C (H)

of a Hilbert space to model Quantum Logic, as envisioned in the pioneering paper by von

Neumann and Birkho¤ in 1936 [8]. Here, the "and" operation is de�ned as the ordinary set

intersection and the "or" operation of two subspaces is their direct sum. Complements are

de�ned by orthogonal complements. To qualify as a logic, C (H) must be a language consisting

of propositions and connectives (operations) axioms and a rule of inference.

The easiest way to understand propositions of Quantum Logic is in terms of logic of exper-

imental propositions. That is one can de�ne explicitly some connectives for a certain special

class of well-suited propositions relating to idealised quantum mechanical tests with an aim to

obtain a logical system satisfying certain formal requirements. If this is accomplished, one says

that one has introduced non-classical or non-Boolean logic. Provided that the formal require-

ments are rigorously met, this accomplishment should be non-controversial. The controversies,

however, surround the underlying assumptions and the pragmatism of a non-classical logic.

A proposition a in Quantum Logic is represented by means of the closed subspace Ma of

Hilbert space H used to describe the quantum entity under consideration. An alternate way is

by means of the orthogonal projection operator Pa on this closed subspace, which we have seen

is in one-to-one correspondence, and, therefore, P(H), the collection of projection operators on

a Hilbert space, forms our required lattice.

Following the approach of [2], let P be the set of propositions of a quantum system. A

56



quantum state q is then represented by a vector uq 2H such that kuqk = 1.

Taking analogy with the Boolean Lattice case, for a proposition a 2 P , we can assign a

closed subspace Ma. This vector belongs to a subspace, which is associated with a proposition

in Quantum Logic (i.e., uq 2 Ma). If Mb is another closed subspace associated with the

proposition b, we de�ne Quantum Logical operations as follows:

a =) b !Ma �Mb

a ^ b !Ma ^Mb =Ma^b =Ma \Mb (6.1)

a _ b !Ma _Mb =Ma_b = cl(Ma [Mb) (6.2)

N (a) !M:a =M?
a (6.3)

cl(Ma [Mb) is the topological closure of the linear space generated by the set Ma [Mb.

It can be shown that Ma �Mb = cl(Ma [Mb). Here, the closure operation depends on the

topology generated by the inner product. In either de�nition, Ma _Mb is the smallest closed

subspace of H that contains both Ma and Mb.

Instead of assigning a valuation for semantics, we can take advantage of the Hilbert structure

of Quantum Mechanics. To this end, we say that a proposition a 2 P is true if the associated

quantum state q upon "inquiring a" has unit probability. From the axioms of quantum mechan-

ics, we can see that a unit probability corresponds to the fact that the vector uq 2Ma. This is

equivalent to Puq = uq where P is a projection operator such that Pa (H) =Ma. According to

these criterion, a positive result will correspond to Pa whereas a negative result will correspond

to I � Pa, where I is the unit operator. This makes sense since (I � Pa) (Pa) = Pa � P 2a = 0

and so a^ � a is always false. On the other hand, (I � Pa) (H) =H�Ma =M?
a

Equipped with these and the equivalences above, it is then no surprise that Quantum Logical

conjunction and implication behave in a manner similar to that of classical logic. Disjunction is

di¤erent; since Mb � cl(Ma [Mb) and Ma � cl(Ma [Mb), it follows that if a is true, then a_ b

is true. Similarly, if b is true, then a _ b is true as well. However, we cannot admit a converse.

This is because cl(Ma [Mb) will contain vectors other than those contained in either Ma or
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Mb. We conclude that the truth table of classical and quantum conjunction and implication

are the same but that for disjunction is di¤erent from classical and Quantum Logic.

The Quantum Logic negation is also not same as the classical counterpart: consider a

proposition a 2 P and suppose � a is true. Associate the quantum proposition a represented by

a vector ua belonging to the closed subspaceMa. This vector belongs to orthogonal complement

of Ma: That is, ua 2 M?
a . but at the same time, this vector does not belong to Ma that is

ua =2 Ma unless it is zero since M?
a \ Ma = f0g :Hence a is not true. Thus, if a proposition

is false, then it�s negation is true. In summary, if the quantum negation of a proposition is

true, then the classical negation of this proposition is true. The converse does not hold: assume

that � a is false. Then, ua =2 M?
a . Even if H = M?

a �Ma, then we yet cannot conclude that

ua 2Ma (it could belong to the span of both) so that we cannot say that a is true.

Our idea of saying that a proposition is true might give away the impression that quantum

logic is fundamentally multivalued. If Quantum Logic is to make sense of the real world,

valuations must correspond to reality. According to the Copenhagen interpretation, any particle

assumes a superposition of in�nite values. In particular, a spin-half particle can encode entire

texts of Shakespeare. Jauch and Piron, however, beg to di¤er: they argued that if Quantum

Logic is not in�nite valued, then for any two proposition p and q there must exist a conditional

proposition p =) q. In fact, they proved that for a speci�c valuation, the interval [0; 1] is

reduced to f0; 1g provided that we introduce a conditional proposition and that monotonic

valuations are closed under the formation of mid-points [18]. These two assumptions may

seem mild but are rather disturbing to the Kochen-Specker theorem: any orthomodular lattice

admits total homomorphisms onto f0; 1g if it is distributive. In other words, there are no

homomorphisms from C (H) to Z2 �this is the famous Kochen-Specker theorem which, in one

swift theorem, discards Einstein�s hypothesis of the EPR paradox as mutually contradictory.

In conclusion, Quantum Logic is neither fuzzy nor Boolen and thus demands a radical shift in

thinking.
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6.2 Solèr�s theorem

With this in mind, we see that the requirement of orthomodularity of a lattice is rather forced

for technical reasons. Thus, orthomodularity in the sense of a Hilbert space is an essential

consideration. It turns out that orthomodularity is key factor one must take into account in

order to determine that the Hermitian Space is Hilbert, thanks to Soler�s theorem, which we

now set the stage for. As expected, Hermitian space (X;K; ') is called orthomodular if for

all subspaces F � X : F = F?? ) X = F � F?: Not all Hermitian spaces are orthomodular,

as was established in Corollary 35.

Note that in such a space, we are not even assuming positivity of the 2-form!

Let I be any indexing set. (fi)i2I is called �-orthogonal system if ' (fi; fk) = 0; (i 6= k)

and if ' (fi; fi) = � for a � 2 K. For � = 1, (fi)i2I is called orthonormal system.

Assume that the orthomodular space (X;K; ') has a -orthogonal system. That is, i.e.

' (ei; ei) =  for all i 2 N and for  2 K. We can convert this into an orthonormal system as

follows: we de�ne a new involution � 7�! ~� and a new form

~' : X �X �! K such that (x; y) 7�! ~' (x; y) := ' (x; y) �1

Then (X;K; ~') is a Hermitian space relative to the involution "~:"and it is orthomodular because

' (x; y) = 0 () ~' (x; y) = 0 for all x; y 2 X. From hereon, (ei)i2N will be treated as an

orthonormal system in (X;K; ').

De�nition 44 A positive de�nite, non-degenerate, Hermitian 2-from is called an inner prod-

uct and (X;K; ') is called an inner product space.

K must have a compatible ordering, even if it is not Archimedean. Thus, we cannot have

an inner product space over a �nite �eld, implying an impossibility of "ordinary" Quantum

Mechanics over a �nite �eld, agreeing with a second approach in [12]. In particular, this means

that we cannot de�ne a norm over a �nite �eld. We, therefore, choose to exclude them from

our discussion from hereon.

Lemma 45 If ' is an inner product, then ' (x; x) = 0 () x = 0
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Proof. ((= ) Holds for any sesquilinear 2-form

( =) ) Since ' is non-degenerate, ' (x; y) = 0 for all x implies y = 0. In particular, it is

valid for x = y. Hence ' (x; x) = 0 =) x = 0

Not all normed spaces are inner product spaces. The simplest example is that of B (X)

with X a real normed space. It is easy to see that kT � Sk2 + kT + Sk2 6= 2
�
kTk2 + kSk2

�
:

let T; S : l2 �! l2 be projection operators. That is, T (xn) = xn and S (xn) = xm. Then,

kSk ; kTk 6= 0 whereas kT � Sk = kT + Sk = 0 for n 6= m. That is, B (X) does not obey

the parallelogram law. On the other hand, for non-Archimedean Hermitian space, kT � Sk2 +

kT + Sk2 � 2max
�
kTk2 ; kSk2

�
, which is rather routine to verify. Therefore, an inner product

cannot be made from the normed space of operators, if the underlying �eld is Archimedean but

our hands are not tied when it comes to spaces over a non-Archimedean �eld.

A space X is called half -normal if it is orthomodular and if there exists an orthogonal

system (ei)i2N � X. X is normal if it is half-normal and X =
�
(ei)i2N

�??. Topologically, X is

a normal space if and only if, given any disjoint closed sets A and B, there are neighbourhoods

U of A and V of B that are also disjoint. In fancier terms, this condition says that A and B

can be separated by neighbourhoods, something akin to the Hausdro¤ topology but for sets

instead of points. Thus, our �rst step will be to approach normality.

Orthomodularity guarantees the existence of closed sets whereas the orthogonal system and

its span guarantee their separation. The topology is generated by the norm on X.

For our purposes, we shall shorten ' (x; x) = hx; xi = hxi, which we call the length of a

vector, following Solèr. There is no danger of confusion with the expectation value as x is not

necessarily an operator. We will also replace ' (x; y) with hx; yi to make the proof look less

messy than it already is.

Theorem 46 (M. P. Solèr�s Theorem) Let (X;K; ') be an in�nite dimensional orthomod-

ular space over a skew �eld K which contains an orthonormal system (ei)i2N. Then K is either

R, C or H and (X;K; ') is a Hilbert space [44]

Proof. Preparations

In the proof that follows, we shall assume that X is normal and then replace this condition

without X =
�
(ei)i2N

�?? and forgo completeness until then.
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Let x be any element of K. Then, nx = h
Pn
i=0 eiix = 0 () h

Pn
i=0 eii = 0 () n = 0

Thus, the characteristic of the underlying �eld of the half-normal space X is zero. Thus, K

is in�nite and therefore, Z � K but since K is a skew �eld, Q � K.

Part A

Let N� := Nn f0g. First we show that for every sequence (�i)i2N� 2 QN
�
with � :=

P1
i=0 �

2
i 2

Q there is a vector x =
P
i2N� �iei 2 X, with hxi = �: For the rationals, we also have Q+ � Q2.

Without loss of generality, we assume �i 6= 0 for all i 2 N. We de�ne

�0 := �

�n :=
�2

��
Pn
i=1 �

2
i

�
n�1X
i=0

�i (n � 1)

so that
nX
i=0

�i =
�2

��
Pn
i=1 �

2
i

Clearly, �i 2 Q and so does
nP
i=0
�i. However, the sum

P1
i=0 �i diverges in R and therefore in

Q because the denominator ��
Pn
i=1 �

2
i �! 0. Clearly, we are currently considering only one

such sequence and not every. This will be accommodated in Part B of this proof.

Since X contains orthonormal systems, one �nds an orthogonal system x0; x1; x2; ::: in X

with hxii = �i for all i � 0. Let F := ((xi)i2N)?? be a normal space and

yn := x0 + :::+ xn�1 �
�0 + :::+ �n�1

�n
xn (n � 1)

Since hxi; xji = 0 for for i 6= j, we have yi ? yj for i 6= j. Thus,

hx0; yni =

*
x0;

n�1X
j=0

xj �
xn
�n

n�1X
j=0

�j

+

=

*
x0;

n�1X
j=0

xj

+
�
*
x0;

xn
�n

n�1X
j=0

�j

+
= hx0i = �0 = a

for n � 1 and
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hyni =
*
n�1P
j=0

xj � xn
�n

n�1P
j=0

�j

+

=

*
n�1P
j=0

xj � xn
�n

n�1P
j=0

�j ;
n�1P
j=0

xj � xn
�n

n�1P
j=0

�j

+

=

*
n�1P
j=0

xj ;
n�1P
j=0

xj � xn
�n

n�1P
j=0

�j

+
�
*
xn
�n

n�1P
j=0

�j ;
n�1P
j=0

xj � xn
�n

n�1P
j=0

�j

+

=

*
n�1P
j=0

xj ;
n�1P
j=0

xj

+
�
*
n�1P
j=0

xj ;
xn
�n

n�1P
j=0

�j

+
+

*
xn
�n

n�1P
j=0

�j ;
n�1P
j=0

xj

+
+

*
xn
�n

n�1P
j=0

�j ;
xn
�n

n�1P
j=0

�j

+

=
n�1P
j=0
hxji+ hxni

 
1
�n

n�1P
j=0

�j

!2

=
n�1P
j=0

�j + �n

 
1
�n

n�1P
j=0

�j

!2

=
n�1P
j=0

�j +
1
�n

 
n�1P
j=0

�j

!2
=

 
n�1P
j=0

�j

! 
1 + 1

�n

n�1P
j=0

�j

!
=
�

�2

��
Pn�1
i=1 �

2
i

��
1 + �2

��
Pn�1
i=1 �

2
i

�
�2

��
Pn
i=1 �

2
i
� �2

��
Pn�1
i=1 �

2
i

��1�
=
�

�2

��
Pn�1
i=1 �

2
i

� 
1 + �2

��
Pn�1
i=1 �

2
i

�
�2(��

Pn�1
i=1 �

2
i )��2(��

Pn
i=1 �

2
i )

(��
Pn
i=1 �

2
i )(��

Pn�1
i=1 �

2
i )

��1!
=
�

�2

��
Pn�1
i=1 �

2
i

��
1 + �2

��
Pn�1
i=1 �

2
i

(��
Pn
i=1 �

2
i )(��

Pn�1
i=1 �

2
i )

�2(��
Pn�1
i=1 �

2
i )��2(��

Pn
i=1 �

2
i )

�
=
�

�2

��
Pn�1
i=1 �

2
i

��
1 + �2

(��
Pn
i=1 �

2
i )

��2
Pn�1
i=1 �

2
i+�

2
Pn
i=1 �

2
i

�
=
�

�2

��
Pn�1
i=1 �

2
i

��
1 + �2

(��
Pn
i=1 �

2
i )

�2�2n

�
=
�

�2

��
Pn�1
i=1 �

2
i

��
�2i+��

Pn
i=1 �

2
i

�2n

�
=
�

�2

��
Pn�1
i=1 �

2
i

��
��

Pn�1
i=1 �

2
i

�2n

�
= �2��2n for all n � 1.

Since (yi)i2N� is orthogonal, we set fi := ��1�iyi for i � 1 and obtain an orthonormal

system (fi)i2N� . In this case,

hx0; fii =


x0; �

�1�iyi
�

= hx0; yii��1�i

= ���1�i = �i
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In other words, there is a vector

f =
1X
i=1

�ifi 2 ((fi)i2N�)?? � F = ((xi)i2N�)?? � X

The crucial point is to show now that hfi = a. A direct calculation can show this but it misses

the important condition that f = x0. Thus we have to show that (fi)i2N� is maximal in F . That

is, ((fi)i2N�)
?? = F . Assume by way of contradiction that the reverse containment does not

hold. Then, there is 0 6= z 2 F with z ? yi for i > 1 so that z ? fi and hence z ? F?. We cannot

have x0 ? z. If this were the case, then hz; y1i = hz; x0i + �0
�1
hz; x1i = 0 implies hz; x1i = 0

and xi ? z for all i by induction. Now, fn = ��1�nyn = ��1�n
n�1P
j=0

xj � ��1�n xn�n
n�1P
j=0

�j implies

z ? F = ((xi)i2N)
?? so that z 2 F?? \ F? = f0g. Thus, z = 0, which is a contradiction. By

scaling z, we may assume that hx0; zi = �. De�nition of the yi entails

0 = hyi; zi

=

*
��1�n

n�1X
j=0

xj � ��1�n
xn
�n

n�1X
j=0

�j ; z

+

= ��1�n

n�1X
j=0

hxj ; zi �
��1�n
�n

n�1X
j=0

�j hxn; zi

i.e.

��1�n

n�1X
j=0

hxj ; zi =
��1�n
�n

n�1X
j=0

�j hxn; zi

or

�n

n�1X
j=0

hxj ; zi =
n�1X
j=0

�j hxn; zi

=) hxi; zi = �i = hxii for i � 0, so that

z =
X
i2N

xi

Such a vector then does not exist. To this end, we show that a vector representation in terms

of its basis is immaterial from a topological point of view: assume that (ai)i2I and (bi)i2I are

orthogonal systems in X with (ai)i2I ? (bi)i2I and haii = � hbii for all i 2 I and for a � 2 K.
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Let further be x =
P
i2I �iai 2 X with �i� = ��i for all i 2 I: This assumption might be

unwarranted but later on, we shall select � = 1 to show that this assumption does not matter.

However, we cannot have � = �1 for otherwise then haii = �hbii or hbii + haii = 0 which

implies

hai + bii = hai + bi; ai + bii

= haii+ hbii+ hbi; aii+ hai; bii

= hbii+ haii = 0

=) ai + bi = 0

=) ai = �bi

=) ai 6? bi, a contradiction.

Hence � 6= �1. We can therefore have (1 + �)�1. Other than that, we have

hai + bii = hai + bi; ai + bii

= hbii+ haii+ hbi; aii+ hai; bii

= hbii+ haii

= (1 + �) hbii

In order to construct the vector y =
P
i2I �ibi, we �rst consider some required equalities.

For all i 2 I, � hbii = haii

=) � hbi; bii = hai; aii

=) hbi; bii� = hai; aii

=) hbi; bii� = hai; aii

=) hbii� = haii

Thus, � hbii = hbii�

From this, we have �
�1 hbii�1 = hbii�1 ��1

Thus, by adding hbii on both sides of the above two, we can have hbii
�
1 + �

�
= (1+ �) hbii

and
�
1 + �

��1 hbii�1 = hbii�1 (1 + �)�1 :
Note that hai + bi; ai � �bii
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= hai; ai � �bii+ hbi; ai � �bii

= hai; aii � hai; bii�+ hbi; aii � hbi; bii�

Since hbii� = haii, therefore hai + bi; ai � �bii = 0

Using these, we can de�ne the orthogonal system

H := (ai + bi; ai � �bi)i2I

Next, ai can be written as (1 + �)�1(1 + �)ai

= (1 + �)�1 [(1 + �)ai + �bi � �bi]

= (1 + �)�1 [a+ �ai + �bi � �bi]

= (1 + �)�1 [�(ai + bi) + (ai � �bi)] whence ((ai)i2I)?? � H??:

Now, we let x = x1 + x2 2 X with x1 2 ((ai + bi)i2I)?? and x2 2 ((ai � �bi)i2I)??

Since hx1; ai + bii hai + bii�1

= hx� x2; aii hai + bii�1 = hx; ai + bii hai + bii�1 � hx2; ai + bii hai + bii�1

= hx; aii hai + bii�1 + hx; bii hai + bii�1

= hx; aii hai + bii�1

= �i haii hai + bii�1

= �i� hbii ((�+ 1) hbii)�1

= �i� hbii hbii�1 (�+ 1)�1

= �i�(�+ 1)
�1

We therefore have

x1 =
X
i2I

�i�(�+ 1)
�1 (ai + bi)

Further we decompose x1 = a+ b, where a 2 ((fi)i2I)?? and b 2 ((gi)i2I)??.

We can write

bi = (1 + �)�1(1 + �)bi

= (1 + �)�1 (bi + �bi)

= (1 + �)�1 (ai � ai + bi + �bi)

= (1 + �)�1 ((ai + bi)� (ai � �bi))
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Thus, hb; bii hbii�1 = hx1 � a; bii hbii�1

= hx1; bii hbii�1 � ha; bii hbii�1

= hx1; bii hbii�1 =


x1; (1 + �)

�1 ((ai + bi)� (ai � �bi))
�
hbii�1

=


x1; (1 + �)

�1 (ai + bi)
�
hbii�1 �



x1; (1 + �)

�1 (ai � �bi)
�
hbii�1

=


x1; (1 + �)

�1 (ai + bi)
�
hbii�1

Since hx1; ai + bii hai + bii�1 = �i�(�+1)
�1,
�
1 + �

��1 hbii�1 = hbii�1 (1 + �)�1 and hbi + bii =
(1 + �) hbii, we therefore have

�i�(�+ 1)
�1 hai + bii (1 + �)�1 hbii�1 = �i�(�+ 1)

�1(1 + �) hbii hbii�1 (1 + �)�1

= �i�(�+ 1)
�1(1 + �)(1 + �)�1

= �i�(�+ 1)
�1

We can therefore have

b =
X
i2I

�i�(�+ 1)
�1bi

Now we construct the vector y by de�ning y := (�+ 1)��1b =
P
i2I �ibi. From here, we have

that hyi = (�+ 1)��1 hbi = (1 + ��1) hbi. We now calculate the length of y by focusing on hbi

and therefore on hai : We have

ha; aii haii�1 = hx1; aii haii�1 � hb; aii haii�1

= hx1; aii haii�1

=


x1; (1 + �)

�1 [�(ai + bi) + (ai � �bi)]
�
haii�1

=


x1; (1 + �)

�1�(ai + bi)
�
haii�1 +



x1; (1 + �)

�1(ai � �bi)
�
haii�1

=


x1; (1 + �)

�1�(ai + bi)
�
haii�1

= hx1; (ai + bi)i (1 + �)�1� haii�1

= �i�(�+ 1)
�1 hai + bii (1 + �)�1� haii�1

= �i�(�+ 1)
�1 hbi + bii (1 + �)�1 hbii�1

= �i�(�+ 1)
�1 (1 + �) hbii (1 + �)�1 hbii�1

= �i�(�+ 1)
�1 (1 + �) hbii hbii�1 (1 + �)�1

= �i�(�+ 1)
�1 (1 + �) (1 + �)�1

= �i� (�+ 1)
�1
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Hence we can have

a =
X
i2I

�i�(�+ 1)
�1ai

= �(�+ 1)�1
X
i2I

�iai

= �(�+ 1)�1x

For the length of x we get

hxi = hx; xi

= hx1 + x2; x1 + x2i

= hx1; x1 + x2i+ hx2; x1 + x2i

= hx1; x1i+ hx1; x2i+ hx2; x1i+ hx2; x2i

= hx1i+ hx2i

= ha+ b; a+ bi+ hx2i

= ha; ai+ ha; bi+ hb; ai+ hb; bi+ hx2i

= hai+ hbi+ hx2i

Since x2 = x� x1 = (�+ 1)��1a� a� b = ��1a� b; we can then compute hx2i as follows:

hx2i =


��1a� b; ��1a� b

�
=



��1f; ��1a� b

�
�


b; ��1a� b

�
= ��1 ha; a� bi��1 � hb; a� bi

= ��1 ha; ai��1 � ��1 ha; bi��1 � ha; bi��1 + hb; bi

= ��1 hai��1 + hbi

Thus, the hxi becomes hai+ 2 hbi+ ��1 hai��1. This can be re-written as

� hxi� = � hai�+ 2� hbi�+ hai
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We now use hai = � hbi, its derivands and hyi = (1 + ��1) hbi to get

(1 + �) hxi (1 + �) = � hxi�+ 2� hyi�+ hxi

Solving for hyi, we get

hyi = 1

2

�
hxi��1 + ��1 hxi

�
(6.4)

Now choose � = 1 to get hyi = hxi

Thus, we are assured that the vector representation does not depend on the choice of the

orthogonal system. Using this, we will show that any in�nite dimensional orthomodular space

can be written as a direct sum of orthogonal copies of it, even if it is not normal. We de�ne

F1 := ((f2i)i2N)
?? and F2 := ((f2i+1)i2N)??. We have F = F1

?
� F2 and according to what we

have just proved, we must have F1 �= F2. This is because if we de�ne a function ' : F1 �! F2

such that

x =
X
i2N

�if2i 7�!
X
i2N

�if2i+1

then, ' is isometric: let a; b 2 F1 and a0 = '(a). Then,

hai =
X
i2N

�i hf2ii =
X
i2N

�i hf2i+1i =


a0
�

Furthermore, if we have b0 = '(b) 2 E2, then

ha+ bi =
X
i2N

(�i + �i) hf2ii

=
X
i2N

(�i + �i) hf2i+1i

=


a0 + b0

�
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We therefore have

ha+ bi � hai � hbi = ha+ b; a+ bi � hai � hbi

= ha; a+ bi+ hb; a+ bi � hai � hbi

= ha; ai+ ha; bi+ hb; ai+ hb; bi � hai � hbi

= ha; bi+ hb; ai

That is,

ha+ bi � hai � hbi =


a0; b0

�
+


b0; a0

�
:

Likewise we get for any � 2 K,

h�a; bi+ hb; �ai =


�a0; b0

�
+


b0; �a0

�
=)

h�a; bi �


�a0; b0

�
=


b0; �a0

�
� hb; �ai

=)

�
�
ha; bi �



a0; b0

��
=

�

b0; a0

�
� hb; ai

�
�

= �(hb; ai �


b0; a0

�
)�

= �(ha; bi � ha0; b0i)�

If ha; bi 6= ha0; b0i ; then for � = (ha; bi � ha0; b0i)�1 we would get 1 = �1.

F1 and F2 are further decomposed as follows: F1 = F11
?
� F12 and F2 = F21

?
� F22; where

F11 := ((e4i)i2N)
??; F12 := ((f4i+2)i2N)

??; F21 := ((f4i+1)i2N)
?? and F22 := ((f4i+3)i2N)

??:

Again, we have F2 �= F11 and thus F1 �= F11:Further F2 �= F12. Altogether we have F =

F1
?
� F2 �= F11

?
� F12 = F1; thus F �= F

?
� F .

Finally, for this part, we now show that there is no vector z =
P
n2N xn in F for hxii = 1.
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Assume for the sake of contradiction that there is a vector z =
P
n2N xi in F . Then we have

hzi =
*X
i2N

xi

+
=

*X
i2N

x2i

+
+

*X
i2N

x2i+1

+

These three lengths are equal since X �= X
?
�X. Since they are not zero, we have arrived at a

contradiction. Hence the orthonormal system (fi)i2N� is maximal in F so that we have a vector

f =
P
i2N

�ifi in X such that hfi = �.

Part B

Thus, for every sequence (�i)i2N 2 QN
�
with � :=

P1
i=1 �

2
i 2 R we �nd a vector x =P

i2N� �iei 2 X. It can be shown that the choice of the selection of the sequence is immaterial.

To show that R � K, we �rst de�ne

 : R+ �! K

such that � =
P1
i=0 �

2
i 7�!


P
i2N �iei

�
where (�i)i2N is any sequence in QN with � =P1

i=0 �
2
i 2 R.  is well de�ned: we know that the �eld element


P
i2N �iei

�
does not de-

pend on the choice of the orthonormal system (ei)i2N: Let (�0i)i2N 2 QN have
P1
i=0 �

02
i = �:

Pick � > � in Q and (�i)i2N 2 QN with
P1
i=0 �

2
i = �� �:

If x :=
P
i2N �ie2i +

P
i2N �ie2i+1; and x

0 :=
P
i2N �

0
ie2i +

P
i2N �ie2i+1

then hxi = � = hx0i by Part A, we obtain the asserted independence of

P

i2N �iei
�
from

the choice of the �i:

We turn now to the algebraic properties of  . Let �, � 2 R+, �, � 6= 0. We have

1.  (�+ �) =  (�) +  (�)

This is routine to verify, considering that for x =
P
i2N �iei and y =

P
i2N �iei, we have

x+ y =
P
i2N (�i + �i) ei

2.  (1) = 1

This is also fairly easy to see: if 1 =
P1
i=0 �

2
i , then


P
i2N �iei

�
=
P
i2N �

2
i heii = 1 =  (1)

3. 2 (��) =  (�) (�) +  (�) (�)
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In order to show multiplicativity, let (�i)i2N; (�i)i2N be sequences with convergent series

such that square sums � and � are in R+, respectively. For y =
P
i2N �iei and x =P

i2N �iei 2 X. Fix some orthonormal system (e
(j)
i )i;j2N. We have already seen that,

for each i 2 N, there exists the vector yi such that hyii = hyi with yi =
P
j2N �je

(j)
i .

In this case, heii = hyi�1 hyii. Note that �i hyi�1 = hyi�1 �i, for all i 2 N so that we

can apply � = hxi�1 = � in Eq (6:4) to get a vector
P
i2N �iyi =

P
i;j2N �i�je

(j)
i in X

with length 1
2(hxi hyi+ hyi hxi). Thus, we are allowed to assume the existence of a vector

z =
P
i;j2N �i�je

(j)
i with

P1
i;j=0(�i�j)

2 = �� so that hzi =  (��) and

hzi = 1

2
[ (�) (�) +  (�) (�)] =  (�) (�)

For � = � we have 2 (�2) = 2 (�)2 so that we get:

4.  (�2) =  (�)2

and for � = ��1 we get

5. 2 (���1) = 2 (1) = 2 =  (�) (��1) +  (��1) (�)

Multiplying on the left and right by  (�), we get

 (�)2 =  (�)2 (��1) +  (�) (��1) (�)

and 2 (�) =  (�) (��1) (�) +  (��1) (�)2. Since addition is commutative, we must

have  (�)2 = 2 (�). This means that we can equate both sides, then cancel the common

 (�) (��1) (�) to get

 (�)2 (��1) =  (��1) (�)2

We can replace  (�)2 with  (�).

 (�) (��1) =  (��1) (�)

By Bullet 4 and Bullet 5 we get 1 =  (�) (��1) =  (��1) (�). Thus

6.  (�)�1 =  (��1)
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Now by Bullet 3 and Bullet 4

1 =  (��) 
�
��1��1

�
=  (��) 

�
��1��1

�
=
1

2
( (�) (�) +  (�) (�))

1

2

�
 
�
��1

�
 
�
��1

�
+  

�
��1

�
 
�
��1

��
=
1

4

0@  (�) (�) 
�
��1

�
 
�
��1

�
+  (�) (�) 

�
��1

�
 
�
��1

�
+ (�) (�) 

�
��1

�
 
�
��1

�
+  (�) (�) 

�
��1

�
 
�
��1

�
1A

=
1

4
(�+ 1 + 1 + ��1)

where � =  (�) (�) 
�
��1

�
 (��1): Thus, 4 = �+2+��1 from which we have �+��1 = 2.

Multiply both sides by � to get �2� 2�+1 = (�� 1)2 = 0: This simpli�cation is obtained using

the commutativity of addition, not multiplication.

It follows � = 1 and  (�) (�) =  (�) (�) ; thus by Bullet 3,  (��) =  (�) (�)

Now for � < 0, we send � to � (��), and further 0 7�! 0. Hence  is extended to all of R;

this extension is an embedding of �elds. We identify  (R) � K now as an embedding of  to

K from the proof above with R and we consider now R as a �xed sub�eld of K. In particular,

this means that R � S� K where S = fx j x = xg

In the proof of Part A, we have taken (�i)i2N 2 l2 (Q). By now, we have that R � K.

Therefore, the construction in the proof of Part A may now be run as R � K with R in the

role of Q. This will prove that for every sequence (�i)i2N 2 l2 (R) with � :=
P1
i=0 �

2
i , there

exists a vector a =
P
i2N �iei 2 X such that hai = �

Part C

We now show that R � Z = fx j xy = yx, 8y 2 Kg. To this end, we show that for � 2 S � K

with �2 6= �1, � 6= 0, there exists either the vector

X
i2N

�iei 2 X with the length (1� �2)�1

or X
i2N
(��1)iei 2 X with the length (1� (��1)2)�1
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We de�ne for all n 2 N

xn :=

nX
i=0

�iei

yn := xn � (1� �2)�1e0

an := x2n+1 � �2x2n

bn = y2n+2 � �2y2n+1

From this, we have

yn�1 = xn�1 � (1� �2)�1e0

hxn; yni =

*
nX
i=0

�iei; xn � (1� �2)�1e0

+

=

*
nX
i=0

�iei;
nX
i=0

�iei � (1� �2)�1e0

+

=

*
n�1X
i=0

�iei + �
ne;

n�1X
i=0

�iei + �
ne+ (1� �2)�1e0

+
= hxn�1 + �nen; yn�1 + �neni

Thus,

hxn; yni = hxn�1 + �nen; yn�1 + �neni

= hxn�1; yn�1 + �neni+ h�nen; yn�1 + �neni

= hxn�1; yn�1i+ hxn�1; �neni+ h�nen; yn�1i+ h�nen; �neni

=

�
n�1P
i=0

�iei;
n�1P
i=0

�iei � (1� �2)�1e0
�
+

�
n�1P
i=0

�iei; �
nen

�
+

�
�nen;

n�1P
i=0

�iei � (1� �2)�1e0
�
+ h�nen; �neni

=

�
n�1P
i=0

�iei;
n�1P
i=0

�iei

�
�
�
n�1P
i=0

�iei; (1� �2)�1e0
�
+ 0

+

�
�nen;

n�1P
i=0

�iei

�
�


�nen; (1� �2)�1e0

�
+ �n hen; eni�n
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=

n�1X
i=0

�i

*
ei;

n�1X
i=0

�iei

+
�
*
n�1X
i=0

�iei; e0

+
(1� �2)�1 + �n�n

=
n�1X
i=0

�i hei; eji
n�1X
j=0

�j � (1� �2)�1 + �n�n

=

n�1X
i=0

�2i � (1� �2)�1 + �2n

=
nX
i=0

�2i � (1� �2)�1

It follows that hxn�1; yn�1i =
n�1P
i=0

�2i � (1� �2)�1 so that

hxn; yni hxn�1; yn�1i�1 =

 
nX
i=0

�2i � (1� �2)�1
! 

n�1X
i=0

�2i � (1� �2)�1
!�1

=

 
�2n +

n�1X
i=0

�2i � (1� �2)�1
! 

n�1X
i=0

�2i � (1� �2)�1
!�1

= �2n

 
n�1X
i=0

�2i � (1� �2)�1
!�1

+ 1

= 1 + �2n
�
1� (1� �2)�1 + �2 + :::+ �2(n�1)

��1
= 1 + �2n

�
1� �2

��1 �
1� �2 � 1 +

�
1� �2

�
�2 + :::+

�
1� �2

�
�2(n�1)

��1
= 1 + �2n:

�
1� (1� �2)�1:

�
1� �2 � 1 + (1� �2)�2 + :::+ (1� �2)�2(n�1)

���1
= 1 + �2n(��2n)(1� �2) = �2

In the same way we get hyn; xni hyn�1; xn�1i�1 = �2. Using the same routine veri�cation,

we get

han; bmi = 0

for all n;m 2 N. We build

A := fx 2 X j hx; bni = 0;8n 2 Ng
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This set is clearly non-empty. Also, because of the continuity of the Hermitian product, we have

that A is closed. We can therefore have X = A�A?.

Since (1 � �2)�1e0 2 X, we can decompose it as a � b; with a 2 A and b 2 A?. Since we

can write any vector in X as an in�nite sum for basis en, we decompose a 2 A � X as

a =
X
i2N
(�n + "n)en

This choice is justi�ed as follows: a uses an as a basis which in turn uses xn =
nP
k=0

�kek as a

basis. We therefore introduce an "error term" "n 2 K. If we let hbi = (1 � �2)�1" for some

" 2 K, we get from (1� �2)�1e0 = a� b =)



(1� �2)�1e0

�
= (1� �2)�1

= ha� bi

= hai � hbi

=
X
i2N
(�n + "n) heni � hbi

=)

hai = (1� �2)�1 + hbi

= (1� �2)�1 + (1� �2)�1"

= (1� �2)�1(1 + ")

It follows that (1� �2)�1 he0; ai = hai = (1� �2)�1(1 + "): Thus, he0; ai = (1 + ").

Since b = a� (1� �2)�1e0, for every n 2 N we have

0 = hb; ani =


b; x2n+1 � �2x2n

�
=


a� (1� �2)�1e0; x2n+1 � �2x2n

�
=


a; x2n+1 � �2x2n

�
� (1� �2)�1



e0; x2n+1 � �2x2n

�
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After some simpli�cation, we get

= �"2n+2 + 2�2n+2 + "2n+1 + "0

thus

"2n+2 = "2n+1�+ "0�
�(2n+2)

Likewise, from

0 =


�; y2n+2 � �2y2n+1

�
we get

"2n+3 = "2n+2 � "0��(2n+3)

We can therefore arrive at

"n = "n�1�+ (�1)n"0��n for n � 2

If "0 = 0, then "; "n = 0 for all n 2 N. Thus a =
P
i2N �

nen and hai = (1� �2)�1

If "0 6= 0; then let � := �"0�
�1"�10 : Then �"0� = �"0 and thus �"n� = �"n for all n � 0:

It can be shown that � = 1 and this leads to a contradiction. Thus, we are guaranteed the

existence of both vectors.

Now, let r 2 R, r > 0 and 0 6= � 2 K. By Part B, r can be represented as the length of the

vector a =
P
i2N �iei, where (ei)i2N is an orthonormal system and �i 2 Q for all i 2 N: That

is, hai = r. On the one hand we have h�ai = �r�. On the other, h�ai =

P

i2N �i�ei
�
. Now,

heii = (��)�1 h�eii and (��)�1�i = �i(��)
�1 for all i 2 N. Thus using Eq (6:4) we get,

h�ai = 1

2
(r��+ ��r)

Hence

�r� =
1

2
(r��+ ��r) (6.5)
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We do the same for 1=r and �
�1
to get

�
�1 1

r
��1 =

1

2
(
1

r
�
�1
��1 + �

�1
��1

1

r
) (6.6)

Clearly, �
�1 1

r�
�1 =

�
�r�

��1
. We multiply sides of the equations Eq (6:5) and Eq (6:6) to

get

1 =
1

4
(r��

1

r
�
�1
��1 + �

�1
��1

1

r
)

As in the proof of Part B we get r�� = ��r. That is, rk = kr for k 2 K.

Part D

We now show that R =S. Let  2 S. We consider the (commutative) �eld R() � K of the

real numbers extended with  2 K. R() is formally real:

If
Pn
i=0 �

2
i = 0 for some �i 2 R, (i = 0; 1; :::; n), we have �i = 0 for all i = 0; 1; :::; n. In this

case, h
Pn
i=0 �ieii = 0 by Part B.

Let now

S � P :=
�
hxi j 0 6= x =

P
i2N

�iei; �i 2 R()8i 2 N and hxi 2 R()
�
� R()

We have

1. 0 =2 P

2. 1 2 P

3. P + P � P

4. P 2 � P

5. (R())2:P � P

Bullets 1, 2 are obvious. Bullets 3 and 5 follow from the fact that an orthomodular, in�nite

dimensional Hermitian space contains copies of itself, the latter requiring an additional Bullet

4: We prove only Bullet 4: let x =
P
i2N �iei, y =

P
i2N �iei and hxi, hyi, �i, �i 2 R for all

i 2 N. Let further (e(j)i )i;j2N be an orthonormal system. In Part B, we have already shown

that there exists z :=
P
i2N �i�ie

(j)
i 2 X with the length hxi hyi, thus hxi hyi = hzi 2 P .

Using Zorn�s Lemma we can extend P to a positive cone and we get a total ordering " � "on

R(). Now we choose a � 2 R() with 0 < � < 1. If � is in�nitesimal relative to " � ", then
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for each n 2 Nn f0g we have (1 � (n�)�2)�1 < 0 and thus by the vectors we have shown to

exist in Part C, we have
P
i2N(n�)

iei 2 X with the length (1� (n�)�2)�1 . We can use this to

construct an orthogonal system (hn)n2N with hhni = (1 � n2�2) 8n 2 N, which is orthogonal

to an orthonormal system (e0n)n2N. For each n 2 N we de�ne fn := hn + n�e0n and take,

gn 2spanK(hn; e0n) with gn ? fn:(fn)n2N is an orthonormal system.

By Part B, there exists the vector x =
P1
n=1

1
ne0n 2 X, which we can decompose to

x = f + g with f 2 ((fn)n2N)??, g 2 ((gn)n2N)??, and we consider f

(f; fk) =

* 1X
n=1

1

n
e0n; fk

+
=

�
1

k
e0k; hk + k�e0k

�
= �

for all k � 1. Thus f =
P1
n=1 � hfni

�1 =
P1
n=1 �fn. This leads us to a contradiction in

Part A of the non-existence of such vectors.

We have shown � is not in�nitesimal, hence "�" is Archimedean and we have R() = R.

Part E

Finally, we show that K = R, C or H and X �= l2(R); l2(C) or l2(H). We know that �� and

�+� are elements of S = R, each � 2 K is zero of a polynomial of degree two over R. If R $K :

Let � 2 K n R Then R(�) is a (commutative) �eld and R(�) �= C , without loss of generality

we can say C � K.

If C $ K

Let � 2 K n C. We consider the C-left-vector space C+ C�. Let �; �; �0; �0 2 C. Then,

�� = (��1��1)�1 = r(��1��1) = r(��1(r0�+ s0))

= r��1r0�+ r��1s0 2 C�+ C

For certain, r; r0; s0 2 R note that [R(��1��1) : R], [R(��1) : R] � 2. Thus

(�+ ��)(�0 + �0�) 2 C+ C�

and

1 = (�+ ��)
�
�+ ��

�
t�1 =

�
�+ ��

�
t�1(�+ ��)
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with �+ ��t�1 2 C+ C� and t=(�+��)
�
�+ ��

�
2 R. C+ C� is therefore a skew �eld, thus

an associative, �nite dimensional real division algebra and by Frobenius�Theorem2 isomorphic

to H, thus, without loss of generality H � K.

If H $ K

Let � 2 K nH. We build H+H� and we get as above H+H� �= H, a contradiction. Hence

we have K = R, C or H.

In the case K = R we get X �= l2(R) with Part A: assume by way of contradiction that there

is a vector x =
P
i2N �iei in X with

P1
i=0 �

2
i = 1, then hxi = h

Pn
i=0 �ieii +


P
i>n �iei

�
>Pn

i=0 �
2
i for all n 2 N thus hxi =1.

In the case K = C we have �: : C �! C: That is, r + is 7�! r � is, (i =
p
�1). Let

(�n)n2N 2 l2(C) with �n = rn + isn (n 2 N) and
P1
n=0 �n�n =

P1
n=0(r

2
n + s

2
n). We build

x :=
X

rnen + i
X

snen =
X

�nen

x has the length*X
n2N

rnen

+
+

*X
n2N

rnen;
X
n2N

snen

+
�
i + i

*X
n2N

snen;
X
n2N

rnen

+
+ i

*X
n2N

snen

+
�
i

By the Cauchy-Schwarz inequality, which we can apply because we�ve established parts of

the underlying �eld which gives us positiviy of the 2-form, we have

�����
*X
i>N

riei;
X
i>N

siei

+�����
2

�
*X
i>N

riei

+*X
i>N

siei

+

and *X
n2N

rnen;
X
n2N

snen

+
=

*
nX
i=0

riei;

nX
i=0

siei

+
+

*X
i>n

riei;
X
i>n

siei

+

for all n 2 N. Hence

lim
n!1

*X
i>n

riei;
X
i>n

siei

+
<1

2

Every �nite-dimensional associative division algebra over the real numbers is isomorphic to either R, C or H
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and *X
n2N

rnen;
X
n2N

snen

+
= lim
n!1

*
nX
i=0

riei;

nX
i=0

siei

+
=

1X
i=0

risi 2 R

Thus

hxi =
1X
n=0

r2n +
1X
n=0

s2n =
1X
n=0

�n�n

Hence as above we have X �= l2(C).

For the case K = H, we consider analogous to the previous one. With the basis consisting

of

I0 =

0@ 1 0

0 1

1A

I1 =

0@ i 0

0 �i

1A

I2 =

0@ 0 i

i 0

1A

I3 =

0@ 0 �1

1 0

1A
which are the well-known Pauli matrices.

H is an R-vector space

We have �: : H �! H such that

3X
i=0

riIi 7�! r0I0 �
3X
i=0

riIi

with ri 2 R. Let (�n)n2N 2 l2(H) with �n =
P3
i=0 r

(n)
i Ii. We build

x =

3X
i=0

Ii:
X
n2N

r
(n)
i en =

X
n2N

�nen:

Again we have hxi =
P1
n=0 �n�n, and we get X �= l2(H).

We can now apply this result to half-normal spaces
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Theorem 47 Let (X;K; ') be a half-normal space over the skew �eld K. Then K = R, C or

H and X is a classical Hilbert space.

Proof. Let (en)n2N � X be an orthonormal system. Let C := ((en)n2N)??.

Then (C;K; 'C�C) is a normal space. Thus K = R;C or H and C �= l2(R); l2(C) or l2(H).

Let (xi)i2N be a Cauchy sequence in X. We consider F := ((en)n2N)??. If dimF <1 the

sequence converges in F . If dimF =1: Then again we have a maximum countable orthogonal

basis for F . Thus (F; h:; :iF�F ) �= l2(R); l2(C) or l2(H) and the sequence converges in F .

6.3 Concluding Remarks

The fundamental reason we started o¤ with orthomodular lattices was because of the Spectral

Decomposition Theorem for Hilbert Spaces. Since the span of each eigenbasis generates a closed

subspace, therefore, such an approach corresponds to a set of yes-no experimental propositions

of Quantum Mechanics. Of course this stems from the standard formulation of Quantum

Mechanics.

From Corollory 35, we see that even the existence of one non-zero isotropic vector gives

spaces which are not splitting. Thus, our focus should stem on the fact that the geometry

of Quantum Mechanics and Relativity cannot be uni�ed even if we "loosen up" some basic

notions.

These notions are important because the state of a quantum entity is represented by an

eigenbasis which are orthogonal. From what we see so far, no eigenbasis (eigenstates) will be

orthogonal to itself if it is the same. This might o¤er computational and physical clarity but

this basic assumption is what makes quantum mechanics fundamentally di¤erent.

In conclusion, the choice of the underlying �eld, if Archimedean, is rather immaterial from

a geometric point of view and that one cannot hope to formulate a Quantum Mechanics over

a Hermitian space, even with all its generality, given the condition of orthomodularity, which

has physical motivations. In particular, the fundamental geometry of General Relativity is

di¤erent than the fundamental geometry of Quantum Mechanics. Thus, as of yet, mathematics

tells us that the manner in which Quantum Mechanics and Relativity are currently formulated

are essentially incompatible and that a uni�cation will require a major revision and not a
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tweaking of either. The hope to formulate Quantum Mechanics on non-Archimedean �elds

must justify not taking orthomodularity into account on physical and logical grounds. Some

pieces of mathematics do point us in the same direction: if K is the �eld p-adic numbers and

dimX � 5, then we are guaranteed the existence of isotropic vectors.
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Chapter 7

Conclusion

In summary, we see that Quantum Mechanics is fundamentally di¤erent and that the hope

to achieve a uni�ed theory of physics will require a completely revamped system based on the

grounds of geometry (solely on the non-existence of isotropic vectors), which implies the current

logic of Quantum Mechanics. In particular, the basic postulate of quantum mechanics of the

formulation of states (complete in either sense of Einstein or Bohr) are a drastic departure from

uni�cation. This was achieved by justifying the use of sharp eigenvalues.
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Chapter 8

Appendix

8.1 Uncertainty Principle

De�nition 48 Let Â,B̂ be two self-adjoint operators on H. The commutator
h
Â; B̂

i
of Â,B̂

is de�ned as ÂB̂ � ÂB̂ and the anti-commutator
n
Â; B̂

o
is de�ned as ÂB̂ + ÂB̂

An interesting consequence of these properties are the uncertainty relations, from which

stems Hiesenberg�s uncertainty relation

De�nition 49 Deviation 4Â of an operator Â is de�ned as

4Â = Â� h ; Â iÎ

where
D
Â
E
= h ; Â i denotes the expectation value of Â where  2H is a state (that is,

k k = 1). The

Lemma 50 If Â is self-adjoint, then so is 4Â

Proof. Â� = Â implies 4Â� = Â� � h ; Â iÎ� = Â� hÂ ;  iÎ = Â� h ; Â iÎ

Lemma 51
��
4Â

�2�
= hÂ2i � hÂi2
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Proof. From the de�nition of 4Â; it follows that

�
4Â

�2
=

�
Â�

D
Â
E
Î
�2

=
�
Â�

D
Â
E
Î
��

Â�
D
Â
E
Î
�

= Â2 �
D
Â
E
Â� Â

D
Â
E
+
D
Â
E2
Î

= Â2 � 2
D
Â
E
Â+

D
Â
E2
Î

Now,
��
4Â

�2�
= h ;

�
4Â

�2
 i = h ;

�
Â2 � 2Â

D
Â
E
+
D
Â
E2�

 i

= h ; Â2 i � 2
D
Â
E
h ; Â i+

D
Â
E2
h ; i

= h ; Â2 i � 2
D
Â
E2
+
D
Â
E2

= hÂ2i � hÂi2

Using this, we can de�ne the uncertainty �A of Â: �A =

s��
4Â

�2�
=

q
hÂ2i � hÂi2:

And now, for the celebrated Uncertainty Relation

Theorem 52 Let Â; B̂ be any two Hermitian operators. Then, �A4B � 1
2

���D[Â; B̂]E���
Proof. If

�
4Â

�
 =

�
Â�

D
Â
E
Î
�
 = � and

�
4B̂

�
 =

�
B̂ �

D
B̂
E
Î
�
 = �, then

h
�
4Â

�2
ih
�
4B̂

�2
i = h ;

�
4Â

�2
 ih ;

�
4B̂

�2
 i

= h�; �ih�; �i

� jh�; �ij2 by the Cauchy-Schwarz inequality

=
���D�4Â� ;�4B̂� E���2

=
���D ;�4Â4B̂� E���2 = ���h4Â4B̂i���2

From a direct calculation, it can be inferred
���D4Â4B̂E���2 = 1

4

���DhÂ; B̂iE���2+ 1
4

���DnÂ; B̂oE���2
)
���D4Â4B̂E���2 � 1

4

���DhÂ; B̂iE���2
Since

��
4Â

�2���
4B̂

�2�
�
���D4Â4B̂E���2 and ���D4Â4B̂E���2 � 1

4

���DhÂ; B̂iE���2
we have �A�B � 1

4

���DhÂ; B̂iE���
In particular, for position P and momentum Q, [P;Q] = i H2�
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8.2 GNS Construction

For a coverage of the GNS construction according to our requirements and assumptions, see

[17]

8.3 Non-isometric involutions

One of the best known bits of mathematical folklore is that there are in�nitely many automor-

phisms of complex numbers i.e. the complex numbers can be permuted in many ways (besides

the familiar conjugation) that preserve addition and multiplication. It might hit as a surprise

that these other automorphisms, which we will call "wild" in line with [48], rely on the use

of the AC. In particular, in [5], it is claimed without proof that the automorphisms of C are

22
@0 . Note that this is the same as the set of all complex-valued mappings, which even includes

constant functions! We use essentially the same arguments to show that the same is valid for

involutive anti-automorphisms. Herein lies the paradox.

Since the latter claim relies on a non-constructive axiom (AC), the anti-automorphisms

which will be constructed are going to be non-constructive, as well, making it di¢ cult to

imagine almost all of them (pun intended).

Clearly the identity map which reverses order of multiplication on a sub�eld of an in�nite

skew �eld K, IK is an involutive anti-automorphism of K, the trivial anti-automorphism of K.

All other involutive anti-automorphisms of K are called non-trivial.

We shall �rst prove that there are only two automorphisms by using the fact that for any

K, if AS (K) = f� : �� = ��g and S (K) = f� : �� = ��g, then K =S (K) � AS (K) so that

� = a+ b uniquely for a 2 S (K) and b 2 AS (K) for any � 2 K so that if AS (K) 6= ?, then for

i 2 AS (K), we have the unique decomposition � = a1 + ia2

Theorem 53 Let ' : K �! K be an involutive anti-automorphism. Then ' is either equal to

the identity or to conjugation

Proof. Every automorphism sends 0 and 1 to themselves and from this it follows that every

automorphism sends the rational numbers Q � K to itself. Furthermore, if a 2 Q is non-zero

and � 2 K satis�es �2 = a, then we also have '(�)2 = '(a) = a, and since �� are the only two
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numbers such that �2 = a we must have '(�) = ��. Now, '(�) = ' (a1 + ia2) = ai+' (i) a2 =

� (ai + ia2). It follows that either '(i) = i or '(i) = �i

Theorem 54 Any involutive anti-automorphism between sub�elds of K extends IQ, the identity

map on Q.

Proof. Let � be an involutive anti-automorphism and let F = fa : � (a) = ag : It is easy to

show that F is a sub�eld of K. Since Q is contained in any sub�eld, � must extend IQ [48].

Theorem 55 If � is an involutive anti-automorphism with domain K, then � can be extended

to Ka.

Proof. Let F = f� : � is an involutive anti-automorphism extending� to a sub�eld ofKag.We

shall show that F satis�es the three hypotheses of Zorn�s Lemma. F is nonempty since � itself

extends to K. Clearly, F � K�K. Let S be a chain in F and let � be the union of all � in S.

S as a chain, is nonempty; hence it contains atleast one involutive anti-automorphism and thus

h0; 0i and h1; 1i are in �. Let ha; bi and hx; yi be in �. Then ha; bi 2 �1 and hx; yi 2 �2 for some

�1; �2 2 S. Since S is a chain, either �1 � �2 or �1 � �2 and thus the two ordered pairs are

both in the larger one of �1 and �2: From this, it follows easily that � is a one-to-one function

which preserves algebric operations. The involutive anti-automorphism � is in the family F

since it clearly extends � and its domain, the union of sub�elds of Ka, is contained in Ka. We

apply Zorn�s Lemma and let  be a maximal member of F . We must show that the domain

and range of  are Ka:

If the domain of  is not all of Ka, then there is atleast one element � in Ka but not in the

domain of  . Since � is algebriac over K and Ka is algebraically closed there is at least one �

in Ka which is the root of the  transform of the minimal polynomial of � over K. Thus there

is atleast one way of extending  to a larger involutive anti-automorphism still in F . This is a

contradiction to the maximality of  and thus Ka is the domain of  :

Since Ka is algebraically closed and  is an involutive anti-automorphism, the range of  is

an algebraically closed sub�eld of Ka contains K. But the only such sub�eld of Ka is Ka itself;

hence Ka is the range of  and the proof is complete.

Theorem 56 Wild, involutive anti-automorphisms do not preserve order

87



Proof. Let � be an involutive anti-automorphism between the sub�elds of K. We �rst

show that � preserves order in S (K). If x < y, then there is a number w such that w 6= 0

and y � x = w2 but when � (y)� � (x) = [� (w)]2 so that � (w) 2 S (K) and � (w) 6= 0. Hence

� (y) � � (x) is positive i.e � (x) < � (y) : Now extend � to K and assume a 2 K but that

� (a) 6= a:Choose a symmetric number q between a and � (a) such that a < q < � (a) and apply

�: the ordering between a and q is reversed.

Corollary 57 j� (a)j 6= jaj for some a.

Proof. Take K = R and S (K) = Q with � extended to R
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